SORTENVERZEICHNIS

Baustoffgemische nach TL SoB-StB

Firma:

August Oppermann Kiesgewinnungs- und Vertriebs- GmbH Brückenstr. 12 34346 Hann. Münden

Datum: 04.10.2018

Blatt Nr.: 1 von 1

Natürliche Gesteinskörnungen

Petrographischer Typ: Muschelkalkstein

Natursand Northeim

Werk:		Emmenhause	en	Prüfzeugnis I	Nr.: 1	448 / 20-SoB / 18
Beschreibu	ng der Baustoffge	emische				
Lfd. Nr.		1	2	3	4	5
Sortennummer		0/32 STS	0/32 FSS	0/45 FSS	0/45 S	rs
Baustoffgemisc	:h	0/32 STS	0/32FSS	0/45 FSS	0/45 S	rs
Kornrohdichte		2,70 Mg/m³	2,70 Mg/m³	2,70 Mg/m³	2,70 Mg	/m³
Kornzusammer	nsetzung	OC ₉₀	OC ₉₀	OC ₉₀	OC ₉₀	
Gehalt an	maximal	UF ₅	UF ₅	UF ₅	UF ₅	
Feinanteilen	minimal	LF _{NR}	LF _{NR}	LF _{NR}	LF _{NR}	
Kornformkennzahl		SI ₅₀	SI ₅₀	SI ₅₀	SI ₅₀	
Plattigkeitskennzahl		*)	*)	*)	*)	
Bruchflächigkei	t	C _{90/3}	C _{NR}	C _{90/3}	C _{NR}	
Los-Angeles-Ko	peffizient	*)	*)	*)	*)	
Widerstand geg	gen Zertrümmerung	≤ 28	≤ 28	≤ 28	≤ 28	
Widerstand geg Schotter (LA)	gen Schlag-Abrieb an	*)	*)	*)	≤ 40	
Frost-Tau-Wide	erstand	F ₄	F ₄	F ₄	F ₄	
Proctordichte	opt. Wassergehalt	5,4 M%	6,1 M%	5,4 M%	4,3 M	%
1 Toctordicate	Trockendichte	1,95 Mg/m³	2,13 Mg/m³	2,06 Mg/m³	2,12 Mg	/m³
CBR-Wert		*)	*)	*)	*)	
Organische Ver	runreinigungen	*)	*)	*)	*)	
*) no perfor	rmance determined (Ke	nnwert nicht festges			,	

Angaben zur werkstypischen Kornzusammensetzungen

Baustoffgemische für Schottertragschichten

Lfd. Nr. Korngruppe	werktypische Kornzusammensetzung Durchgang durch das Sieb (mm) in M%												SDV nach	
IVI.	Korngruppe	0,5	1,0	2,0	4,0	5,6	8,0	11,2	16,0	22,4	31,5	45.0	63.0	Tab. 8 der
1	0/32 STS	10	20	27	38		50		63			100		TL SoB-StB
3	0/45 STS	13	20	27		38		52		70		100		
4	0/45 FSS	10	12	20	24	35	40	52	63	75	87	100		

Dr. Moll GmbH & Co. KG

Prüfinstitut und Ingenieurbüro

Sattlerstr. 42 30916 Isernhagen Tel.: 05136 / 8006-60 FAX: 05136 / 8006-74

http://www.drmoll.de e-mail: webmaster@drmoll.de

A. Ausfertiguriy

Anerkannte Prüfstelle nach RAP Stra für Baustoffe und Baustoffgemische im Straßenbau

	Prüfungsart		Fachgebiet								
		A	BB	BE	C	D	F	G	Н	1	
0	Baustoffeingangsprüfungen	NE BEG	200	CHO.	CO	D0	9200		100 (5%)	1000	
1	Eignungsprüfungen	A1		Harris C		9320	Sea and	32.50	H1	11	
2	Fremdüberwachungen	10000	150000	10000			F2	E201233		12	
3	Kontrollprüfungen	A3	BB3	BE3	C3	D3	F3	G3	НЗ	13	
4	Schiedsuntersuchungen	A4	BB4	BE4	C4	D4	F4	G4	H4	14	

 Bauaufsichtliche Anerkennung nach Landesbauordnung (NDS 07) als ÜZ-Stelle für Gesteinskörnungen mit Alkaliempfindlichkeit nach Alkali-Richtlinie

• Anerkannte Sachverständigenstelle der DB AG

 Akkreditiert nach DIN EN ISO/IEC 17025:2005 Die Akkreditierung gilt nur für die in der Urkunde aufgeführten Prüfverfahren

Sachkundig hinsichtlich Probenahmen gem. LAGA PN 98

Mitglied im <u>bup</u> – Bundesverband unabhängiger Institute für bautechnische Prüfungen e.V..

• Gesellschafter der bupZert GmbH, Berlin.

August Oppermann

Dr. Moll GmbH & Co. KG, Sattlerstraße 42, 30916 Isernhagen

Kiesgewinnungs- und Vertriebs- GmbH

Brückenstr. 12 34346 Hann. Münden

Prutbericht	nach	IL SoB-StB (EN 13285) SoB
	ter to the transfer	

Prüfbericht-Nr.:	1448/20-SoB/18	Prüfberichtdatum:	04.10.2018
Anschrift des Werkes:	Werk Emmenhausen		
	Esebecker Weg, 37120 Bovenden, OT E	mmenhausen	
Werk:	Emmenhausen	Petrographischer Typ:	Kalkstein (Muschelkalk)
Material:	Brechkorn		
Art der Güteüberwachur	g: Fremdüberwachung nach TL G SoB-StB	Werksunabhängige Gesteinsart:	Natursand *)
Erstprüfung/Eignungsna	chweis bzw. letzte 2-jährliche Güteüberwachung:	Prüfbericht Nr.: 1448/6/17 vo	m 02.06.2017
Überwachungszeitraum:	2. Halbjahr 2018		
Zulassungszeitraum:	1. Halbjahr 2019		

Angaben über die Probenahme nach DIN EN 932-1:

Ort: Steinbruch Emmenhausen

Teilnehmer: Herr Hartmann (Werk), Herr Bilge (Dr. Moll GmbH & Co. KG)

Nr.	Sortennummer		körnung nm]	Datum der Probenahme	Entnahmestelle	Anwendungsbereich
1	0/32 STS	0/32	STS	19.09.2018	Halde	Schottertragschicht
2	0/32 FSS	0/32	FSS	19.09.2018	Halde	Frostschutzschicht
3	0/45 FSS	0/45	FSS	19.09.2018	Halde	Frostschutzschicht
4	0/45 STS	0/45	STS	19.09.2018	Halde	Schottertragschicht

Bemerkungen:

*) Den Baustoffgemischen für Schottertragschichten wird anforderungsgerecht ca. 10-15 M.-% Natursand 0/2 der Kieswerk Bodetal GmbH & Co. KG, Wegeleben zugemischt.

Den Baustoffgemischen für Frostschutzschichten wird anforderungsgerecht ca. 10 M.-% Natursand 0/2 des Kieswerkes Northeim der Fa. A. Oppermann zugemischt. Das Material wird jeweils güteüberwacht.

Verteiler	Fa.	Fa.	NDS	PTW	
verteller	1 x Orig.	1 x pdf	18 (pdf)	1 x pdf	

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände.

Prufbericht umfasst

Seiten.

Dr. Moll GmbH & Co. KG, Prüfinstitut und Ingenieurbüro

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 2/8

zum Prüfbericht Nr: 1448/20-SoB/18

vom: 04.10.2018

Geometrische Anforderungen

Gesteinskörnungen (d/D)	[mm]		0.	/32 STS	-77-00°0020070		0	/32 FSS	
				Kate	egorie			Kate	gorie
Korngrößenverteilung		DIN EN	l 933-1		**	DIN EN	N 933-1		
		Soll	Ist	Soll	Ist	Soll	Ist	Soll	Ist
Gehalt an Feinanteil (< 0,06	63 mm)								
Minimal Maxima	[M -%1]	- ≤5	4.1	LFNR	LFNR	-	4.9	LFNR	LFNR
	11	20		UF ₅	UF ₅	≤5		UF ₅	UF ₅
Korngrößenverteilung Siebgröße [mm]		Rückst.	Σ			Rückst.	Σ		
< 0.125	[M%]	4.6	5			5.5	6		
0.125 - 0.25	[M%]	2.3	7			2.7	8		
0.25 - 0.5	[M%]	6.5	13			3.2	11		
0.5 - 1.0	[M%]	8.0							
1.0 - 2.0			21			4.9	16		
	[M%]	7.8	29		1	7.5	24		
2.0 - 4.0	[M%]	8.5	38			12.2	36		
4.0 - 5.6	[M%]	6.5	44			7.7	44		
5.6 - 8.0	[M%]	7.9	52			12.2	56		
8.0 - 11.2	[M%]	10.3	62			13.9	70		
11.2 - 16.0	[M%]	13.4	76			13.2	83	E C	
16.0 - 22.4	[M%]	12.9	89			9.8	93		
22.4 - 31.5	[M%]	10.6	99			6.1	99		
31.5 - 45.0	[M%]	0.7	100			1.1	100		
Überkorn	[Soll	lst			Soll	Ist		-
bis Siebgröße D	[mm]	31					19/5/10		
ols oleogrobe <u>D</u>		90-99	.5	OC ₉₀	OC ₉₀	31.5		OC ₉₀	OC ₉₀
bis Siebgröße 1,4 D	[M%]			150.50	83762	90-99	99	3.74	10705
bis Siebgröße 1,4 D	[mm]	45					5.0		
	[M%]	100	100		ļ	100	100		
Zwischensiebanforderunge		Soll	Ist			Soll	Ist		
bei Siebgröße 2.0	[mm]	_	_			15-75	24		
bei Siebgröße 16.0	[mm]					47-87	83		
Werkstypische Toleranzen	1519700000000	Soll	Ist			Soll	Ist		
bei Siebgröße 0.5 bei Siebgröße 1.0	[mm]	5-15	13			_	_		
bei Siebgröße 2.0	[mm] [mm]	15-25 20-34	21 29			_	-		
bei Siebgröße 4.0	[mm]	30-46	38			_	200000		
bei Siebgröße 8.0	[mm]	42-58	52			=	== 0		
bei Siebgröße 16.0	[mm]	60-76	76						
Differenzen der Siebdurch		Soll	Ist			Soll			
bei Siebgröße 1.0 - 2.0	[mm]	4-15	8				- 131		
bei Siebgröße 2.0 - 4.0	[mm]	7-20	9			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
bei Siebgröße 4.0 - 8.0	[mm]	10-25	14			_			
bei Siebgröße 8.0 - 16.0	[mm]	10-25	24				2- 3		
Kornformkennzahl DI	N EN 933-4	Is	st	Prüfdatur	n 09.2018	Is	st	Prüfdatur	n 09.2018
	[M%]	2		SI ₅₀	SI ₄₀	2		SI ₅₀	SI ₄₀
Bruchflächigkeit DI	N EN 933-5	Is		- 50	140		st	9.50	J 5140
Gebrochene Oberfläche (>		100				100	,		
Gebrochene Oberfläche (50 -		0	100		1025		100		1000
Gebrochene Oberfläche (10 -		0	_	C _{100/0}	C _{100/0}	0	-	C _{100/0}	C _{100/0}
			0	ohne f	Prüfung	0	0	ohne f	Prüfung
Gebrochene Oberfläche (<	10) [M%]	0	0		-03503-04507-1	0	0		

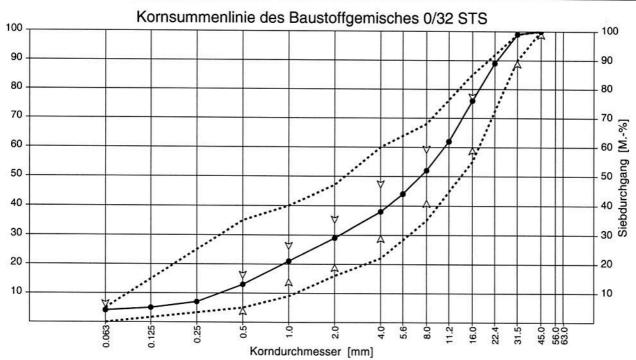
Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 3/8

zum Prüfbericht Nr: 1448/20-SoB/18

vom: 04.10.2018

Geometrische Anforderungen


Gesteinskörnungen (d/D)	[mm]		0	/45 FSS	agorio.	1	0	/45 STS	
Korngrößenverteilung		DIN EN	1.000.4	Kate	gorie	DIN 51	1000 4	Kate	gorie
Konigrobenvertending		Soll	lst	Soll	Ist	Soll	V 933-1	0-11	
Gehalt an Feinanteil (< 0,063 r	nm)	3011	151	3011	ISI	5011	Ist	Soll	Ist
Minimal	,			15	15				
Maximal	[M%]	<u>-</u> ≤5	4.5	LF _{NR} UF ₅	LFNR	- ≤5	3.2	LF _{NR}	LFNR
Korngrößenverteilung		- 20		UF5	UF ₅	70		UF ₅	UF ₅
Siebgröße [mm]		Rückst.	Σ			Rückst.	Σ		
< 0.125	[M%]	4.9	5				85=55		
0.125 - 0.25	[M%]	1.0	6			3.8	4		
0.25 - 0.5		2.6				1.8	6		
0.5 - 1.0	[M%]		12			5.4	11		
1.0 - 2.0	[M%]	3.8				5.6	17		
2.0 - 4.0	[M%]	5.2	18			4.4	21		
	[M%]	8.5	26			5.0	26		
4.0 - 5.6	[M%]	6.2	32			4.3	30		
5.6 - 8.0	[M%]	9.0	41			7.0	37		
8.0 - 11.2	[M%]	10.6	52			9.6	47		
11.2 - 16.0	[M%]	12.9	65			11.1	58		
16.0 - 22.4	[M%]	13.0	78			11.6	70		
22.4 - 31.5	[M%]	10.9	89			15.8	85		
31.5 - 45.0	[M%]	11.4	100			14.6	100		
45.0 - 56.0	[M%]	0.0	100			0.0	100		
56.0 - 63.0	[M%]	0.0	100			0.0	100		
Überkorn		Soll	Ist			Soll	Ist		
bis Siebgröße D	[mm]	45	5.0	OC ₉₀	00	45	.0		
	[M%]	90-99	100	0090	OC ₉₀	90-99	100	OC ₉₀	OC ₉₀
bis Siebgröße 1,4 D	[mm]	63	3.0			63	3.0	9	
	[M%]	100	100			100	100	į į	
Zwischensiebanforderungen /	SDV	Soll	Ist			Soll	Ist		
bei Siebgröße 2.0	[mm]	15-75	18			_	_		
bei Siebgröße 22.4	[mm]	47-87	78				<u></u> 7		
Werkstypische Toleranzen		Soll	Ist			Soll	Ist		
bei Siebgröße 0.5	[mm]	-	_			8-18	11		
bei Siebgröße 1.0 bei Siebaröße 2.0	[mm]	S 	_			15-25	17	j l	
bei Siebgröße 5.6	[mm]		_			20-34 30-46	21		
bei Siebgröße 11.2	[mm]	_				44-60	30 47		
bei Siebgröße 22.4	[mm]	_	_			62-78	70		
Differenzen der Siebdurchgän		Soll	Ist			Soll	Ist		
bei Siebgröße 1.0 - 2.0	[mm]	_	_			4-15	4		
bei Siebgröße 2.0 - 5.6	[mm]	_	-			7-20	9		
bei Siebgröße 5.6 - 11.2	[mm]	_	_			10-25	17		
bei Siebgröße 11.2 - 22.4	[mm]					10-25	23		
Kornformkennzahl DIN E	N 933-4		st	Prüfdatui	m 09.2018	ls	st	Prüfdatun	09.2018
	[M%]		7	SI ₅₀	SI ₄₀	3	5	SI ₅₀	SI ₄₀
	N 933-5		st			ls	st		a - new and a
Gebrochene Oberfläche (> 90)	[M%]	100	100			100	100		
Gebrochene Oberfläche (50 - 90)	[M%]	0	0001000	C _{100/0}	C _{100/0}	0	100	C _{100/0}	C _{100/0}
Gebrochene Oberfläche (10 - 50)	[M%]	0	0		Prüfung	0	0	ohne P	
Gebrochene Oberfläche (< 10)	[M%]	0	0		1 3	0	0		20,000
Bemerkung zu: 0/45 FSS		D = 100 l verteilund	M% : In o	diesem Fall i n (z.B. im So	muss der Lie rtenverzeich	eferant die v	werktypiso	che Korngröß ungsbeschrei	len- buna)
Bemerkung zu: 0/45 STS								the Korngröß	
				(z.B. im So			reintypist	me Romgion	GII-

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60

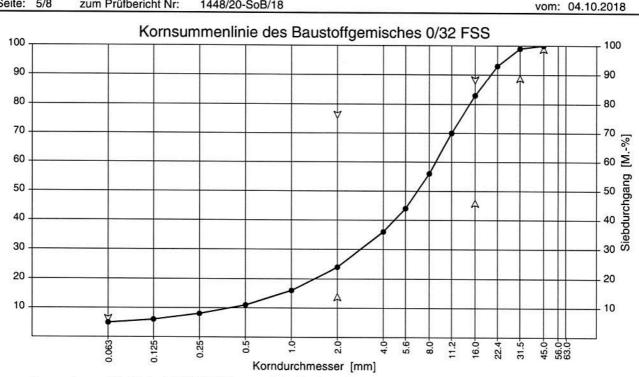
Telefax: (05136) 8006-74

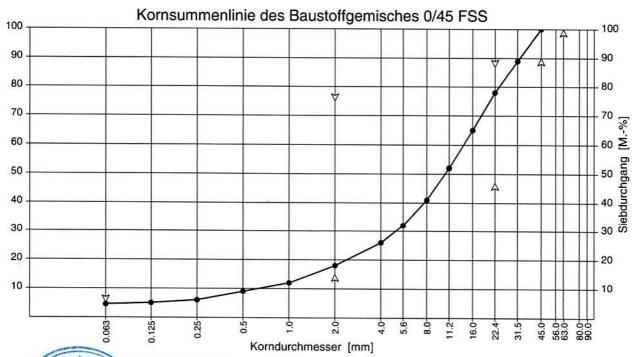
zum Prüfbericht Nr: Seite: 4/8 1448/20-SoB/18 vom: 04.10.2018

Das untersuchte Material 0/32 STS entspricht hinsichtlich der Kornverteilung den Anforderungen der TL SoB-StB an ein Baustoffgemisch für Schottertragschichten.

Die Anforderungen der Tab. 8, Tab. 10 und Tab. 11 der TL SoB-StB werden eingehalten.

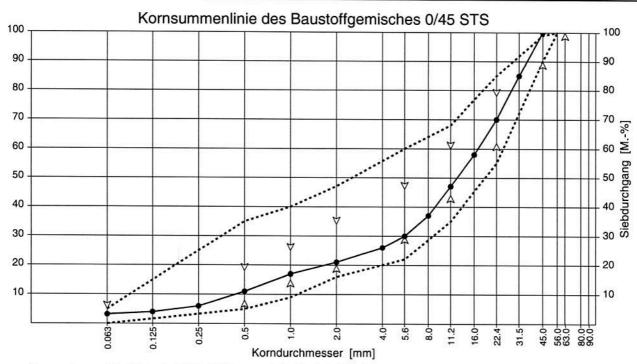
Baustoffgemisch	Vergleich mit dem vom Hersteller erklärten Wert (S) Toleranzen der Durchgänge in M% durch die Siebe (mm)									
0/32 STS	0.5	1	2	4	8	16				
SDV	10 - 30	14 - 35	23 - 40	30 - 52	43 - 60	63 - 77				
Toleranz	±5	±5	±7	±8	±8	±8				
werkstypische Kornzusammensetzung	10	20	27	38	50	63				
werkstypische Toleranz	5 - 15	15 - 25	20 - 34	30 - 46	42 - 58	55 - 71				
Ist-Wert	13	21	29	38	52	76				


Baustoffgemisch	Differenz der Durchgänge in M% durch die Siebe (mm)						
0/32 STS	1/2	2/4	4/8	8/16			
Soll-Differenz	4 - 15	7 - 20	10 - 25	10 - 25			
Ist-Differenz	8	9	14	24			


Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60

Telefax: (05136) 8006-74

Seite: 5/8 zum Prüfbericht Nr: 1448/20-SoB/18


Das untersuchte Material 0/32 FSS entspricht hinsichtlich der Kornverteilung den Anforderungen der TL SoB-StB an ein Baustoffgemisch für Frostschutzschichten.

Das untersuchte Material 0/45 FSS entspricht hinsichtlich der Kornverteilung den Anforderungen der L SoB-StB an ein Baustoffgemisch für Frostschutzschichten.

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 6/8 zum Prüfbericht Nr: 1448/20-SoB/18 vom: 04.10.2018

Das untersuchte Material 0/45 STS entspricht hinsichtlich der Kornverteilung den Anforderungen der TL SoB-StB an ein Baustoffgemisch für Schottertragschichten.

Die Anforderungen der Tab. 8, Tab. 10 und Tab. 11 der TL SoB-StB werden eingehalten.

Baustoffgemisch	Vergleich mit dem vom Hersteller erklärten Wert (S) Toleranzen der Durchgänge in M% durch die Siebe (mm)									
0/45 STS	0.5	1	2	5.6	11.2	22.4				
SDV	10 - 30	14 - 35	23 - 40	30 - 52	43 - 60	63 - 77				
Toleranz	±5	±5	±7	±8	±8	±8				
werkstypische Kornzusammensetzung	13	20	27	38	52	70				
werkstypische Toleranz	8 - 18	15 - 25	20 - 34	30 - 46	44 - 60	62 - 78				
Ist-Wert	11	17	21	30	47	70				

Baustoffgemisch	Differenz der Durchgänge in M% durch die Siebe (mm)					
0/45 STS	1/2	2/5.6	5.6/11.2	11.2/22.4		
Soll-Differenz	4 - 15	7 - 20	10 - 25	10 - 25		
Ist-Differenz	4	9	17	23		

Dr. Moll GmbH & Co. KG, Prüfinstitut und Ingenieurbüro

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 7/8 zum Prüfbericht Nr: 1448/20-SoB/18 vom: 04.10.2018

Physikalisch	е	Gesteins-	Prüf-							
Anforderung	en	körnung [mm]/ Prüfdatum	körnung [mm]	körnung Einzelwert/e			Ist- wert	Soll	Ist	
Rohdichte pp		Fiuldatum	[iiiiii]							
DIN EN 1097-6, Anhang A	[Mg/m³]	0/32 STS 05.2018	0/31,5	2.696	6 2	2.696	i.M.	2.70	1	2.70
DIN EN 1097-6, Anhang A	[Mg/m³]	0/32 FSS 05.2018	0/31,5	2.700) ;	2.698	i.M.	2.70	1	2.70
DIN EN 1097-6, Anhang A	[Mg/m³]	0/45 FSS 05.2018	0/45	2.703	3 2	2.699		2.70	1	2.70
DIN EN 1097-6, Anhang A	[Mg/m³]	0/45 STS 05.2018	0/45	2.698 2.70		2.701	i.M.	2.70	1	2.70
Optimaler Wasse	ergehalt un	d Trockendi	chte (Proct	or)			- 23			
DIN EN 13286-2	[M%]	0/32 STS	0/21 5	opt. Was	ssergehalt	5.5	lea	5.4	1	5.4
DIIV LIV 15200-2	[Mg/m ³]		0/31,5	Trocke	endichte	1.95	korr.	1.95		1.95
DIN EN 13286-2	[M%]	0/32 FSS	0/31,5	opt. Was	ssergehalt	6.1		6.1	1	6.1
DIN EN 13200-2	[Mg/m ³]	05.2018	0/31,5	Trocke	endichte	2.12	1 - 1	2.13		2.13
DIN EN 13286-2	[M%]	0/45 FSS	0/31,5	opt. Was	ssergehalt	6.0	korr	5.4	1	5.4
DIT LIV 10200-2	[Mg/m ³]	05.2018	0/31,5	Trocke	endichte	2.02	korr.	2.06		2.06
DIN EN 13286-2	[M%]	0/45 STS		opt. Was	ssergehalt	5.2 korr.		4.3	1	4.3
[Mg/m ³]		05.2018	0/31,3	Trocke	endichte	2.05	Kon. [2.12		2.12
Widerstand gege	n Zertrümr	nerung (Sch	lagzertrüm	merungs	wert)	AND THE PARTY OF T				•
DIN EN 1097-2, Abs. 6	[M%]	0/32 STS 09.2018	8/12,5	25.10 25.38		24.66	i.M.	25.0	≤28	≤28
		00.2010	Rohdichte pp			Kornfor	Kornform [M%]			
Los Angeles-Koe	effizient an	Schotter								
DIN EN 1097-2, Abs. 5	[M%]	0/45 STS 09.2018	35,5/45	39.2				39	≤40	≤40
Widerstand gege	n Schlag a	n Schotter								
DIN 52115, Teil 2	52115, [M%] 0/45 STS 35,5/45		35,5/45	28.9	29.6	29.7	i.M.	29.4	≤30	≤30
		03.2016	Rohdichte pp [Mg/m³] 2.68 Kornford		m [M%]	18				
Wasseraufnahme	e (für Verwi	itterungsbes	tändigkeit)	0						
DIN EN 1097-6, Anhang B	[M%]	0/45 STS 05.2018	Handstücke	7	0.7 0.5	0.6	i.M.	0.6	1	0.6
Widerstand gege	n Frostbea	nspruchung								
DIN EN 1367-1	[M%]	0/32 STS 05.2017	8/16	0.8 1.3		0.8	i.M.	1.0	F ₄	F ₁
		03.2017	Prüfflüssigke	it: Was	cor		-			

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 8/8

zum Prüfbericht Nr:

1448/20-SoB/18

vom: 04.10.2018

Allgemeine Angaben (Fremdüberwachung)

1	Prüfung					
1.1	Verantwortlicher/Durchführender der WPK (intern):	Herr Hartmann				
1.2	Ort/Adresse des Labors für die WPK (intern):	PTW, Witzenhausen				
1.3	Wurde die Probenahme entsprechend den Anforderungen der DIN EN 932-1 durchgeführt?	Ja				
1.4	Werden alle verlangten Prüfungen der WPK (intern) im erforderlichen Prüfrhythmus durchgeführt?	Ja				
1.5	Werden die geforderten Aufzeichnungen der "WPK" ordnungsgemäß geführt?	Ja				
2	Lieferschein					
2.1	Enthält der Lieferschein alle verlangten Angaben?	Ja				
2.2	Enthält der Lieferschein alle notwendigen Zeichen?	Ja				
3	Herstellwerk					
3.1	Entspricht die Lagerung der Gesteinskörnungen den Anforderungen?	Ja				
3.2	Werden die Silos, Halden, Boxen etc. gekennzeichnet?	Ja				

Dr. Molf CmbH & Co.KG Stelly. Prüfstellerleiter

Dipl.-Geol. R. Lenhard

Dr. Mott GmbH & Co. KG. Geschäftsführer

Dr. M. Schmid