Dr. Moll GmbH & Co. KG

Prüfinstitut und Ingenieurbüro

Sattlerstr. 42 30916 Isernhagen Tel.: 05136 / 8006-60 FAX: 05136 / 8006-74 http://www.drmoll.de e-mail: webmaster@drmoll.de

1. Ausfertigung

· Anerkannte Prüfstelle nach RAP Stra für Baustoffe und Baustoffgemische im Straßenbau

	Prüfungsart		Fachgebiet								
		Α	BB	BE	C	D	F	G	Н	- 1	
0	Baustoffeingangsprüfungen		16783		CO	D0	250	19050	24000	19875	
1	Eignungsprüfungen	A1	136206	ENEC.		13350	a dimensión	100 mm	Н1	11	
2	Fremdüberwachungen	1096	-				F2	1000	(250)	12	
3	Kontrollprüfungen	A3	BB3	BE3	C3	D3	F3	G3	НЗ	13	
4	Schiedsuntersuchungen	A4	BB4	BE4	C4	D4	F4	G4	H4	14	

• Bauaufsichtliche Anerkennung nach Landesbauordnung (NDS 07) als ÜZ-Stelle für Gesteinskörnungen mit Alkaliempfindlichkeit nach Alkali-Richtlinie

• Anerkannte Sachverständigenstelle der DB AG

 Akkreditiert nach DIN EN ISO/IEC 17025:2005 Die Akkreditierung gilt nur für die in der Urkunde aufgeführten Prüfverfahren

Sachkundig hinsichtlich Probenahmen gem. LAGA PN 98

- Mitglied im <u>bup</u> Bundesverband unabhängiger Institute für bautechnische Prüfungen e.V..
- · Gesellschafter der bupZert GmbH, Berlin.

Dr. Moll GmbH & Co. KG, Sattlerstraße 42, 30916 Isernhagen

August Oppermann Kiesgewinnungs- und Vertriebs- GmbH

Brückenstr. 12 34346 Hann. Münden

Prüfbericht DIN EN 12620 (EN 12620) Beton nach

Prüfbericht-Nr.:	1448/14-B/18	Prüfberichtdatum:	01.10.2018
Anschrift des Werkes:	Kieswerk Northeim		
	Hollenstedter Weg, 37154 Northeim		
Werk:	Northeim	Petrographischer Typ:	Ruhme-Sand, Ruhme-Kies
Material:	Rundkorn		
Art der Güteüberwachun	g: Freiwillige Güteüberwachung		
Erstprüfung/Eignungsna	chweis bzw. letzte 2-jährliche Güteüberwachung:	Prüfbericht Nr. 1448/25-	B/17 vom 08.12.2017
Überwachungszeitraum:	2. Halbjahr 2018		
Zulassungszeitraum:	1. Halbjahr 2019		

Angaben über die Probenahme nach DIN EN 932-1:

Ort:

Kieswerk Northeim

Teilnehmer: Herr Naumann (Werk), Herr Bilge (Dr. Moll GmbH & Co. KG)

Nr.	Sortennummer	Lieferkörnung [mm]	Datum der Probenahme	Entnahmestelle	Anwendungsbereich		
1	2	0/2	17.09.2018	Halde	GK für Beton		
2	4	2/8	17.09.2018	Halde	GK für Beton		
3	6	8/16	17.09.2018	Halde	GK für Beton		
4	7	16/32	17.09.2018	Halde	GK für Beton		

Bemerkungen: keine

Verteiler	Fa.	Fa.	PTW	
verteller	1 x Orig.	1 x pdf	1 x pdf	

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände.

Der Prüfbericht umfasst 6 Seiten.

Freiwillige

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 2/6

zum Prüfbericht Nr:

1448/14-B/18

vom: 01.10.2018

Geometrische Anforderungen

Gesteinskörnungen	(d/D) [mm]					2/8				
			Kate	gorie			Kate	gorie		
Korngrößenverteilur	DIN EN	V 933-1		vii	DIN EN	N 933-1		N)		
		Soll	Ist	Soll	Ist	Soll	Ist	Soll	Ist	
Gehalt an Feinanteil	(< 0,063 mm)			23333						
Gehalt an Feinanteil	[M%]	≤3	0.5	f ₃	f ₃	≤1,5	0.4	f _{1,5}	f _{1,5}	
Korngrößenverteilur Siebgröße [mm]	ng	Rückst.	Σ			Rückst.	Σ		.,,0	
< 0.125	[M%]	1.8	2			T TOO TOO!				
0.125 - 0.25	[M%]	5.5	7							
0.25 - 0.5	[M%]	18.3	26							
0.5 - 1.0	[M%]	39.6	65			0.81)	1 ¹⁾			
1.0 - 2.0	[M%]	23.3	89			2.0	3			
2.0 - 2.8	[M%]	8.2	97			6.3	9			
2.8 - 4.0	[M%]	2.9	100			17.9	27			
4.0 - 5.6	[M%]					44.9	72			
5.6 - 8.0	[M%]					27.4	99			
8.0 - 11.2	[M%]					0.7	100			
11.2 - 16.0	[M%]					0.0	100			
Unterkorn		Soll	Ist			Soll	Ist			
bis Siebgröße	1/2 [mm]	3	_			1.	.0			
	[M%]					0-5	1			
bis Siebgröße	[mm]	<u>-</u>	_			2	.0			
-	[M%]	_	_			0-20	3			
Überkorn		Soll	Ist	G _F 85	G _F 85	Soll	Ist	G _C 85/20	G _C 85/20	
bis Siebgröße D	[mm]	2	.0			8.	.0	•	"	
A STATE OF THE STA	[M%]	85-99	89			85-99	99			
bis Siebgröße 1	,4 D [mm]	2	.8			11	.2			
	[M%]	95-100	97			98-100	100			
bis Siebgröße 2	2 D [mm]	4	.0			16	6.0			
- 0 0000 0000 -	[M%]	100	100			100	100			
Werkstypische Toler	ranzen	Soll	Ist		1	Soll	Ist			
bei Siebgröße 0.063	[mm]	0-3	1			_				
bei Siebgröße 0.25	[mm]	0-36	7			-	_			
bei Siebgröße 1.0	[mm]	47-87	65			_	_			
bei Siebgröße 2.0 Grobheit/Feinheit	[mm]	85-95	89				. –			
Feinheitsmodul	[84 0/1		.1		CF		st			
Siebdurchgang 0.5 m	m [M%]		6		CP	_		=	_	
Kornformkennzahl	DIN EN 933-4		st		UP	- 6	-	- Delifetation	- 00 0010	
- NOTHINGHIIZAIII	[M%]		- St				6		n 09.2018	
1)	[101,-76]					<u> </u>	U	SI ₅₅	SI ₂₀	

¹⁾ und kleiner

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 3/6

zum Prüfbericht Nr:

1448/14-B/18

vom: 01.10.2018

Geometrische Anforderungen

Gesteinskörnun	gen (d/D)	[mm]			8/16 Kate	gorie			16/32	gorie
Korngrößenvert	Korngrößenverteilung		DIN EN	933-1	ratogono		DIN EN	1 933-1	Nate	yone
			Soll	Ist	Soll	Ist	Soll	Ist	Soll	Ist
Gehalt an Feinar	nteil (< 0,0	63 mm)				101		101	Oon	131
Gehalt an Feina	nteil	[M%]	≤1,5	0.0	f _{1,5}	f _{1,5}	≤1,5	0.0	f _{1,5}	f _{1,5}
Korngrößenverteilung Siebgröße [mm]			Rückst.	Σ	, ,,,	,,,0	Rückst.	Σ	1,5	
< 4.0		[M%]	0.4	0						
4.0 - 5.6		[M%]	1.0	1	1					
5.6 - 8.0		[M%]	12.2	14	1		1.11)	1 1)		
8.0 - 11.2		[M%]	41.0	55	1	Ú	2.4	4		
11.2 - 16.0		[M%]	44.7	99	1	li .	16.5	20		
16.0 - 22.4		[M%]	0.7	100	1		32.8	53		
22.4 - 31.5		[M%]	0.0	100	1		46.4	99		
31.5 - 45.0		[M%]					0.8	100		
45.0 - 56.0		[M%]					0.0	100		
56.0 - 63.0		[M%]					0.0	100		
Unterkorn			Soll	Ist			Soll	Ist		
bis Siebgröße	d/2	[mm]	4.0				8.0			
		[M%]	0-5	0			0-5	1		
bis Siebgröße	d	[mm]	8.	0			16	.0		
		[M%]	0-20	14			0-20	20		
Überkorn			Soll	Ist	G _C 85/20	G _C 85/20	Soll	Ist	G _C 85/20	G _C 85/20
bis Siebgröße	D	[mm]	16	.0			31	.5		
		[M%]	85-99	99			85-99	99		
bis Siebgröße	1,4 D	[mm]	22	.4			45	.0		
		[M%]	98-100	100			98-100	100		
bis Siebgröße	2 D	[mm]	31.5				63	.0		
		[M%]	100	100			100	100		
Kornformkennza	ahl D	IN EN 933-4	Is	st	Prüfdatur	n 09.2018	ls	it	Prüfdatur	n 09.2018
		[M%]	6	3	SI ₅₅	SI ₁₅	2	6	SI ₅₅	SI ₄₀

¹⁾ und kleiner

Dr. Moll GmbH & Co. KG, Prüfinstitut und Ingenieurbüro

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 4/6

zum Prüfbericht Nr:

1448/14-B/18

vom: 01.10.2018

	A SHOWN MINES IN	am raibono		10/14 0/10							vom: 0	1.10.2018
Policy	Physikalisch Anforderung	ie jen	körnung [mm]/	körnung		Einze	lwert/e				Soll	Ist
Policy	Rohdichte, Was	seraufnahm	e Pyknomet	erverfahre	n						M	
DIN EN 1097-6 Pa Mg/m² O2 O2-018 Pa O2-018 O2-018		Rohdichte ρrd [Mg/m³]				2.57	2.57	2.57	i.M.	2.57	1	2.57
Production Pro	DIN EN 1097-6	ρα [Mg/m³]		0/2	2.67	2.67	2.67	2.67	i.M.	2.67	1	2.67
Authoritime 1.4 1.		ρssd [Mg/m³]	09.2018	0,2	2.61	2.61	2.61	2.61	i.M.	2.61	1	2.61
DIN EN 1097-6 Part Mighting Part		aufnahme [%]			1.4	1.4	1.4	1.4	i.M.	1.4	1	1.4
DIN EN 1097-6 Pack Mighting Pack P		ρrd [Mg/m³]			2.51	2.51	2.51	2.51	i.M.	2.51	1	2.51
Din En 1097-6 Pasc (May) Wilson Pasc (May) Wilson Pasc (May) Wilson Pasc (May)	DIN EN 1097-6	ρα [Mg/m³]		2/8	2.68	2.68	2.68	2.68	i.M.	2.68	1	2.68
Authorities	0.000 0.000 0.000 0.000 0.000 0.000 0.000	ρssd [Mg/m³]	09.2018		2.57	2.57	2.57	2.57	i.M.	2.57	1	2.57
DIN EN 1097-6 Pada Majmin Robichine Pada Majmin Robichine Pada Majmin Pada		aufnahme [%]			2.5	2.5	2.5	2.5	i.M.	2.5	1	2.5
DIN EN 1097-6 DIN EN 1097-2 DIN EN 1097-2 DIN EN 1097-2 DIN EN 1097-6 DIN EN 1097-6 DIN EN 1097-6 DIN EN 1097-2 DIN EN 1097-		ρrd [Mg/m³]			2.53	2.53	2.53	2.53	i.M.	2.53	1	2.53
Post Myderstand Myderstan	DIN EN 1097-6	ρα [Mg/m³]		8/16	2.67	2.67	2.67	2.67	i.M.	2.67	1	2.67
Authorities		ρssd [Mg/m³]	09.2018		2.58	2.58	2.58	2.58	i.M.	2.58	1	2.58
DIN EN 1097-6		aufnahme [%]			2.0	2.0	2.0	2.0	i.M.	2.0	1	2.0
DIN EN 1097-6		ρrd [Mg/m³]	16/32 09.2018		2.58	2.58	2.58	2.58	i.M.	2.58	1	2.58
Post Masser Mas	DIN EN 1097-6	ρα [Mg/m³]		16/31,5	2.65	2.65	2.65	2.65	i.M.	2.65	1	2.65
No. 1.0		ρssd [Mg/m³]			2.61	2.61	2.61	2.61	i.M.	2.61	1	2.61
DIN EN 1097-2, Abs. 6 M% 8/16 09.2018 8/12,5 22.27 22.65 21.93 i.M. 22.3 SZNR SZ22					1.0	1.0	1.0	1.0	i.M.	1.0	1	1.0
Abs. 6 (IM%) O9.2018 O9.2	THE STREET AND ADDRESS OF THE STREET, THE	en Zertrümn	nerung (Sch	lagzertrüm	merung	swert)						
Rohdichie ρp Mg/m³ 2.64 Komform M% 17		[M%]		8/12,5	22.27	22	.65	21.93	i.M.	22.3	SZNR	SZ ₂₂
DIN EN 1367-1 [M%] 8/16 10.2017 8/16 10.2017 Pr\(\text{offliossigkeit:} \) Wasser			00.20.0	Rohdichte p	o [Mg/m	3] 2.64		Kornforr	m [M%]	17		
10.2017 Prüfflüssigkeit: Wasser	Widerstand geg	en Frostbea	nspruchung									
Prüfflüssigkeit: Wasser	DIN EN 1367-1	[M%]		8/16	0.7	0	.6	0.6	i.M.	0.6	F ₄	F ₁
DIN EN 1367-6			10.2017	Prüfflüssigke	eit: W	asser						
Magnesiumsulfatwert	Frost-Tausalz-W	iderstand				_						
Magnesiumsulfatwert DIN EN 1367-2 [M%] 8/16 10.2017 10/14 15.5 17.7 i.M. 17 MSNR MS18 Chemische Anforderungen Gesteinskörnung [mm]/ Prüfdatum [mm] Einzelwert/e Istwert Soll Ist Vorhandensein von Huminsäure DIN EN 1744-1, Abschnitt 15.1 [-] 0/2 09.2018 0/2 heller als Farbbezugslösung ja ja bestanden ja ja bestanden DIN EN 1744-1 (P. 1) 0/2 09.2018 09.2018 09.2018 09.2018 09.2018 09.2018 09.2018 09.2018 09.2018 09.2018 09.2018 0/2 00.00 0.00 ≤0.5 ≤0.5 DIN EN 1744-1 (P. 1) 0/2 09.2018 0/2 09.2018 0/2 09.2018 0/2 0.00 0.00 ≤0.5 ≤0.5 DIN EN 1744-1 (P. 2/8 09.2018 0/2 09.2018 0/2 0.00 0.00 ≤0.5 ≤0.5	DIN EN 1367-6	[M%]		8/11,2	7.1	6	.7	7.0	i.M.	6.9	≤8	≤8
DIN EN 1367-2				Prüfflüssigke	it: 19	%ige NaC	l-Lösung	9				
Chemische Anforderungen Gesteinskörnung [mm]/ Prüf-körnung [mm] Vorhandensein von Huminsäure DIN EN 1744-1 [-] 0/2 09.2018 0/2 heller als Farbbezugslösung ja ja bestanden DIN EN 1744-1 [-] 2/8 09.2018 2/8 heller als Farbbezugslösung ja ja bestanden Gehalt an groben organischen Verunreinigungen (leichtgewichtige, grobe organische Bestandteile) DIN EN 1744-1 [M%] 0/2 09.2018 0/2 0.00 0.00 ≤0.5 ≤0.5 DIN EN 1744-1 [M%] 1/2 2/8 0.20 0.00 0.00 ≤0.5 ≤0.5		F	8/16	10/14	15	.5	1	7.7	i M	17	MSND	MS10
Anforderungen körnung [mm]/ Prüf-körnung Einzelwert/e Istwert Soll Ist Vorhandensein von Huminsäure DIN EN 1744-1 [-] 0/2 09.2018 0/2 heller als Farbbezugslösung ja ja bestanden DIN EN 1744-1 [-] 2/8 09.2018 2/8 heller als Farbbezugslösung ja ja bestanden Gehalt an groben organischen Verunreinigungen (leichtgewichtige, grobe organische Bestandteile) DIN EN 1744-1 [M%] 0/2 09.2018 0/2 0.00 0.00 ≤0.5 ≤0.5 DIN EN 1744-1 [M%] 2/8 0/2 0.00 0.00 ≤0.5 ≤0.5			10.2017							3/	WONA	WO 18
Vorhandensein von Huminsäure DIN EN 1744-1 (a) Schnitt 15.1 (b) 09.2018 0/2 (b) heller als Farbbezugslösung ja ja bestanden DIN EN 1744-1 (b) Abschnitt 15.1 (c) 09.2018 2/8 (b) heller als Farbbezugslösung ja ja bestanden Gehält an groben organischen Verunreinigungen (leichtgewichtige, grobe organische Bestandteile) DIN EN 1744-1 (b) (M%] (M%] (M%] (99.2018) 0/2 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) DIN EN 1744-1 (b) (M%] (M%) (1.4 (b) 2/8 (0.00) (0.00	Chemische Anforderungen		körnung [mm]/	körnung		Einze	wert/e	9			Soll	Ist
Abschnitt 15.4 I*I 09.2018 0/2 Heller als Parbbezugslösung ja ja bestanden DIN EN 1744-1. [-] 2/8 09.2018 2/8 heller als Farbbezugslösung ja ja bestanden Gehalt an groben organischen Verunreinigungen (leichtgewichtige, grobe organische Bestandteile) DIN EN 1744-1, Abs. 14.2 [M%] 0/2 09.2018 0/2 0.00 0.00 ≤0.5 ≤0.5 DIN EN 1744-1, DIN EN 1744-1, Abs. 14.2 [M. %] 2/8 <td>Vorhandensein</td> <td>von Humins</td> <td></td>	Vorhandensein	von Humins										
DIN EN 1744-1. Abschnitt 15.1 [-] 2/8 09.2018 2/8 heller als Farbbezugslösung ja ja bestanden Gehalt an groben organischen Verunreinigungen (leichtgewichtige, grobe organische Bestandteile) DIN EN 1744-1, Abs. 14.2 [M%] 0/2 09.2018 0/2 0.00 0.00 ≤0.5 ≤0.5 DIN EN 1744-1, Abs. 14.2 [M. %] 2/8	DIN EN 1744-1, Abschnitt 15.4	[-]		0/2	heller a	als Fart	bezug	slösung		ja	ja	bestanden
Gehalt an groben organischen Verunreinigungen (leichtgewichtige, grobe organische Bestandteile) DIN EN 1744-1, Abs. 14.2 [M%] 0/2 09.2018 0/2 0.00 0.00 ≤0.5 ≤0.5 DIN EN 1744-1, DIN EN 1744-1, CM 2/1 2/8 0/2 0.00 <	DIN EN 1744-1	[-]	2/8	2/8	heller a	als Fart	bezug	slösung		ja	ja	bestanden
DIN EN 1744-1, [M%] 0/2 0.00 0.00 ≤0.5 ≤0.5 DIN EN 1744-1, [M.%] 2/8 0/2 0.00 0.00 ≤0.5 ≤0.5	111 596 111111	n organisch		nigungen (leichtae	wichti	ge. arc	be orga	nische	Bestand	Iteile)	-
DIN EN 1744-1, [M 9/1 2/8 2/9 0.00	DIN EN 1744-1.		0/2	-503 45% 41%				Ju			100000000	≤0.5
	DIN EN 1744-1,	[M%]	2/8	2/8		0.	00			0.00	≤0.1	≤0.1

Dr. Moll GmbH & Co. KG, Prüfinstitut und Ingenieurbüro

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

<u>Seite: 5/6</u> zum Prüfbericht Nr: 1448/14-B/18 vom: 01.10.2018

Chemische Anforderungen		Gesteins- körnung [mm]/ Prüfdatum	Prüf- körnung [mm]	Einzelwert/e	Ist- wert	Soll	lst
Gehalt an grober	n organisch	en Verunrei	nigungen (leichtgewichtige, grobe orga	nische Bestan	dteile)	
DIN EN 1744-1, Abs. 14.2	[M%]	8/16 09.2018	8/16	0.00	0.00	≤0.1	≤0.1
DIN EN 1744-1, Abs. 14.2	[M%]	16/32 09.2018	16/31,5	0.00	0.00	≤0.1	≤0.1
Alkali-Kieselsäur	e-Reaktivit	ät					
Alkali-Richtlinie	[-]	0/2 09.2018	0/2			1	ΕI
Maßnahmen gegen	schädigende	Alkalireaktion	im Beton" vo	uus Grauwacke besteht, ist im Sinn om Oktober 2013 die Unbedenklich d im Zuge der Aufbereitung nicht ge	keit der Gesteinsl	körnungen ohne	gende e
Alkali-Richtlinie	[-]	2/8 09.2018	2/8			1	ΕI
Maßnahmen gegen	schädigende	Alkalireaktion	im Beton" vo	uus Grauwacke besteht, ist im Sinn om Oktober 2013 die Unbedenklich d im Zuge der Aufbereitung nicht ge	keit der Gesteinsl	cörnungen ohne	gende e
Alkali-Richtlinie	[-]	8/16 09.2018	8/16	=		1	ΕI
Obwohl das Materia	al des Werkes	Northeim zu d	a. 70 M% a	aus Grauwacke besteht, ist im Sinn	e der DAfSth-Bick	ntlinie "Vorheur	-anda
Prüfung auf Alkalie	ı schädigende mpfindlichkeit	 Alkalireaktion 	im Beton" vo	m Oktober 2013 die Unbedenklich	keit der Gesteinsl	körnungen ohne	ende e
Prüfung auf Alkalier Alkali-Richtlinie	schädigende mpfindlichkeit [-]	 Alkalireaktion 	im Beton" vo	om Oktober 2013 die Unbedenklich d im Zuge der Aufbereitung nicht g	keit der Gesteinsl	körnungen ohne	e E I
Prüfung auf Alkaliel Alkali-Richtlinie Obwohl das Materia Maßnahmen gegen	[-] al des Werkes	e Alkalireaktion gegeben. Das 16/32 09.2018 s Northeim zu de Alkalireaktion	im Beton" vo Material wird 16/32 ca. 70 M% a im Beton" vo	om Oktober 2013 die Unbedenklich d im Zuge der Aufbereitung nicht gr aus Grauwacke besteht, ist im Sinn om Oktober 2013 die Unbedenklich	keit der Gesteinslebrochen (Rundko	körnungen ohnorn). / ntlinie "Vorbeug	E I
Prüfung auf Alkalier Alkali-Richtlinie Obwohl das Materia Maßnahmen geger Prüfung auf Alkalier	mpfindlichkeit [-] al des Werkes i schädigende mpfindlichkeit	a Alkalireaktion gegeben. Das 16/32 09.2018 s Northeim zu de Alkalireaktion gegeben. Das	im Beton" vo Material wird 16/32 ca. 70 M% a im Beton" vo	om Oktober 2013 die Unbedenklich d im Zuge der Aufbereitung nicht ge aus Grauwacke besteht, ist im Sinn	keit der Gesteinslebrochen (Rundko	körnungen ohnorn). / ntlinie "Vorbeug	E I
Prüfung auf Alkaliel Alkali-Richtlinie Obwohl das Materia Maßnahmen gegen	mpfindlichkeit [-] al des Werkes i schädigende mpfindlichkeit	a Alkalireaktion gegeben. Das 16/32 09.2018 s Northeim zu de Alkalireaktion gegeben. Das	im Beton" vo Material wird 16/32 ca. 70 M% a im Beton" vo	om Oktober 2013 die Unbedenklich d im Zuge der Aufbereitung nicht gr aus Grauwacke besteht, ist im Sinn om Oktober 2013 die Unbedenklich	keit der Gesteinslebrochen (Rundko	körnungen ohnorn). / ntlinie "Vorbeug	E I
Prüfung auf Alkalier Alkali-Richtlinie Obwohl das Materia Maßnahmen geger Prüfung auf Alkalier Petrographische DIN EN 932-3 Der Kies (> 2.0 mm	mpfindlichkeit [-] al des Werkes schädigende mpfindlichkeit Beschreib [-]) setzt sich zt 1%), Kiesels	a Alkalireaktion gegeben. Das 16/32 09.2018 s Northeim zu de Alkalireaktion gegeben. Das ung 8/16 10.2017 usammen aus: chiefer (12,2 M	im Beton" vo Material wird 16/32 ca. 70 M% a im Beton" vo Material wird 8/16 Grauwacke/5	om Oktober 2013 die Unbedenklich d im Zuge der Aufbereitung nicht gr aus Grauwacke besteht, ist im Sinn om Oktober 2013 die Unbedenklich	keit der Gesteinslebrochen (Rundko	cörnungen ohnorn). / ntlinie "Vorbeug cörnungen ohnorn).	E I gende e
Prüfung auf Alkalier Alkali-Richtlinie Obwohl das Materia Maßnahmen gegen Prüfung auf Alkalier Petrographische DIN EN 932-3 Der Kies (> 2,0 mm Mesozoikum (2,9 Muntersuchten Probe	[-] al des Werkes schädigende mpfindlichkeit Beschreib [-] b) setzt sich zu 1%), Kiesels en nicht vorha	a Alkalireaktion gegeben. Das 16/32 09.2018 s Northeim zu d a Alkalireaktion gegeben. Das ung 8/16 10.2017 usammen aus: chiefer (12,2 Minden.	im Beton" vo Material wird 16/32 ca. 70 M% a im Beton" vo Material wird 8/16 Grauwacke/5	om Oktober 2013 die Unbedenklich dim Zuge der Aufbereitung nicht ge aus Grauwacke besteht, ist im Sinn om Oktober 2013 die Unbedenklich dim Zuge der Aufbereitung nicht ge Sandstein/Quarzit aus dem Paläoz	keit der Gesteinslebrochen (Rundko	cörnungen ohnorn). / ntlinie "Vorbeug cörnungen ohnorn).	E I gende e
Prüfung auf Alkalier Alkali-Richtlinie Obwohl das Materia Maßnahmen geger Prüfung auf Alkalier Petrographische DIN EN 932-3 Der Kies (> 2,0 mm Mesozoikum (2,9 N untersuchten Probe Gehalt an wasse	[-] al des Werkes schädigende mpfindlichkeit Beschreib [-] b) setzt sich zu 1%), Kiesels en nicht vorha	a Alkalireaktion gegeben. Das 16/32 09.2018 s Northeim zu d a Alkalireaktion gegeben. Das ung 8/16 10.2017 usammen aus: chiefer (12,2 Minden.	im Beton" vo Material wird 16/32 ca. 70 M% a im Beton" vo Material wird 8/16 Grauwacke/5	om Oktober 2013 die Unbedenklich dim Zuge der Aufbereitung nicht ge aus Grauwacke besteht, ist im Sinn om Oktober 2013 die Unbedenklich dim Zuge der Aufbereitung nicht ge Sandstein/Quarzit aus dem Paläoz	keit der Gesteinslebrochen (Rundko	körnungen ohni om). / Intlinie "Vorbeug körnungen ohni orn).), Sandstein au kalkstein waren	E I gende e
Prüfung auf Alkalier Alkali-Richtlinie Obwohl das Materia Maßnahmen gegen Prüfung auf Alkalier Petrographische DIN EN 932-3 Der Kies (> 2,0 mm Mesozoikum (2,9 M untersuchten Probe Gehalt an wasse DIN EN 1744-1,	mpfindlichkeit [-] al des Werkes a schädigende mpfindlichkeit Beschreib [-] a) setzt sich z 1%), Kiesels en nicht vorha rlöslichem [M%]	a Alkalireaktion gegeben. Das 16/32 09.2018 s Northeim zu d e Alkalireaktion gegeben. Das ung 8/16 10.2017 usammen aus: chiefer (12,2 M inden. Chlorid	im Beton" vo Material wiro 16/32 ca. 70 M% a im Beton" vo Material wiro 8/16 Grauwacke/5 %), Kristalli	aus Grauwacke besteht, ist im Sinn Oktober 2013 die Unbedenklich dim Zuge der Aufbereitung nicht graus Grauwacke besteht, ist im Sinn om Oktober 2013 die Unbedenklich dim Zuge der Aufbereitung nicht graus der Paläozin (2,9 M%) und Quarz (04,M%).	keit der Gesteinslebrochen (Rundke e der DAfStb-Rick keit der Gesteinslebrochen (Rundke brochen (Rundke oikum (81,6 M%,	körnungen ohni om). / Intlinie "Vorbeug körnungen ohni orn).), Sandstein au kalkstein waren	gende e
Prüfung auf Alkalier Alkali-Richtlinie Obwohl das Materia Maßnahmen geger Prüfung auf Alkalier Petrographische DIN EN 932-3 Der Kies (> 2,0 mm Mesozoikum (2,9 N untersuchten Probe Gehalt an wasse DIN EN 1744-1, Abs. 7	mpfindlichkeit [-] al des Werkes a schädigende mpfindlichkeit Beschreib [-] a) setzt sich z 1%), Kiesels en nicht vorha rlöslichem [M%]	a Alkalireaktion gegeben. Das 16/32 09.2018 s Northeim zu d e Alkalireaktion gegeben. Das ung 8/16 10.2017 usammen aus: chiefer (12,2 M inden. Chlorid	im Beton" vo Material wiro 16/32 ca. 70 M% a im Beton" vo Material wiro 8/16 Grauwacke/5 %), Kristalli	aus Grauwacke besteht, ist im Sinn Oktober 2013 die Unbedenklich dim Zuge der Aufbereitung nicht graus Grauwacke besteht, ist im Sinn om Oktober 2013 die Unbedenklich dim Zuge der Aufbereitung nicht graus der Paläozin (2,9 M%) und Quarz (04,M%).	keit der Gesteinslebrochen (Rundke e der DAfStb-Rick keit der Gesteinslebrochen (Rundke brochen (Rundke oikum (81,6 M%,	cörnungen ohnorn). / Itlinie "Vorbeug cörnungen ohnorn).), Sandstein au calkstein waren ≤0.04	gende e
Prüfung auf Alkalier Alkali-Richtlinie Obwohl das Materia Maßnahmen geger Prüfung auf Alkalier Petrographische DIN EN 932-3 Der Kies (> 2,0 mm Mesozoikum (2,9 N untersuchten Probe Gehalt an wasse DIN EN 1744-1, Abs. 7 Gehalt an säurel DIN EN 1744-1,	mpfindlichkeit [-] al des Werkes a schädigende mpfindlichkeit Beschreib [-] a) setzt sich ze a%), Kiesels en nicht vorha rlöslichem [M%] öslichem S [M%]	a Alkalireaktion gegeben. Das 16/32 09.2018 s Northeim zu d e Alkalireaktion gegeben. Das ung 8/16 10.2017 usammen aus: chiefer (12,2 M inden. Chlorid 0/2 10.2017 ulfat	im Beton" vo Material wird 16/32 ca. 70 M% a im Beton" vo Material wird 8/16 Grauwacke/3 %), Kristalli	om Oktober 2013 die Unbedenklich dim Zuge der Aufbereitung nicht ge aus Grauwacke besteht, ist im Sinn om Oktober 2013 die Unbedenklich dim Zuge der Aufbereitung nicht ge Sandstein/Quarzit aus dem Paläozin (2,9 M%) und Quarz (04,M%).	keit der Gesteinslebrochen (Rundko	körnungen ohnern). / / / / / / / / / / / / /	E I gende e s dem in den ≤0.04

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 6/6

zum Prüfbericht Nr:

1448/14-B/18

vom: 01.10.2018

Allgemeine Angaben (Freiwillige Güteüberwachung)

1	Konformitätsnachweis	
1.1	Konformitätsnachweisverfahren	System 2+
1.2	Codenummer des Zertifizierers/Überwachers (notified body)	2516
1.2a	Name der zertifizierenden Institution	bupZert GmbH, Berlin
1.3	Ist die WPK zertifiziert/überwacht?	Ja
1.4	Nr. des WPK-Zertifikates	2516-CPR-1003-004-12620
1.5	Ausstellungsdatum des WPK-Zertifikates:	27.09.2018
1.6	WPK-Beauftragter:	Herr Naumann
2	Prüfung	
2.1	Verantwortlicher/Durchführender der WPK (intern):	PTW
2.2	Ort/Adresse des Labors für die WPK (intern):	Witzenhausen
2.3	Wurde die Probenahme entsprechend den Anforderungen der DIN EN 932-1 durchgeführt?	Ja
2.4	Werden alle verlangten Prüfungen der WPK (intern) im erforderlichen Prüfrhythmus durchgeführt?	Ja
2.5	Werden die geforderten Aufzeichnungen der "WPK" ordnungsgemäß geführt?	
3	Lieferschein	
3.1	Enthält der Lieferschein alle verlangten Angaben?	Ja
3.2	Enthält der Lieferschein alle notwendigen Zeichen?	Ja
4	Herstellwerk	
4.1	Entspricht die Lagerung der Gesteinskörnungen den Anforderungen?	Ja
4.2	Werden die Silos, Halden, Boxen etc. gekennzeichnet?	Ja

e überwachunge October Bernard Bernard

Dr. Moll GmbH & Co. KG Stellv. Prufstellenleiter

Dipl.-Geol. R. Lenhard

Dr. Moll GmbH & Co. KG

Geschäftsführer

Dipl.-Geol. M. Quakenack

Dr. Moll GmbH & Co. KG

Sattlerstraße 42, 30916 Isernhagen Telefon 0 5136/80 06-60 Telefax 0 5136/80 06-74 http://www.drmoll.de E-mail: webmaster@drmoll.de

Zertifikat der Alkaliempfindlichkeitsklasse

NDS 07-1448.5

Hiermit wird bestätigt, dass das Bauprodukt

Gesteinskörnungen nach DIN EN 12620

hergestellt durch den Hersteller

August Oppermann Kiesgewinnungsund Vertriebs GmbH Brückenstraße 12 34346 Hann. Münden

im Herstellwerk

Northeim

nach den Prüfergebnissen der von der bauaufsichtlich anerkannten Überwachungsstelle

Dr. Moll GmbH & Co. KG Sattlerstraße 42 30916 Isernhagen

gemäß

DAfStB-Richtlinie Vorbeugende Maßnahmen gegen schädigende Alkalireaktion im Beton (Alkali-Richtlinie; 2013-10)

in die folgende Alkaliempfindlichkeitsklasse zu stellen ist:

ΕI

Isernhagen, den 01.10.2018

Diplose Renhard
Stelly. Leiter der Überwachungs- und
Zertifizierungsstelle