

Sattlerstr. 42 30916 Isernhagen Tel.: 05136 / 8006-60 FAX: 05136 / 8006-74

http://www.drmoll.de e-mail: webmaster@drmoll.de

Dr. Moll GmbH & Co. KG, Sattlerstraße 42, 30916 Isernhagen

August Oppermann Kiesgewinnungs- und Vertriebs- GmbH

Brückenstr. 12 34346 Hann, Münden Anerkannte Prüfstelle nach RAP Stra für Baustoffe und Baustoffgemische im Straßenbau

	Prüfungsart		Fachgebiet										
	AMERICAN PROPERTY OF THE PROPE	Α	BB	BE	C	D	F	G	н	- 1			
0	Baustoffeingangsprüfungen			No. of Contract of	CO	D0	JOHG!	F100000	40000	100			
1	Eignungsprüfungen	A1	URBER		-	Distant.	\$3000 E	MARKET R	H1	- 11			
2	Fremdüberwachungen		10000	TIS ISSUE		HEREST	F2		9250	12			
3	Kontrollprüfungen	A3	BB3	BE3	C3	D3	F3	G3	НЗ	13			
4	Schiedsuntersuchungen	A4	BB4	BE4	C4	D4	F4	G4	H4	14			

- Bauaufsichtliche Anerkennung nach Landesbauordnung (NDS 07) als ÜZ-Stelle für Gesteinskörnungen mit Alkaliempfindlichkeit nach Alkali-Richtlinie
- Anerkannte Sachverständigenstelle der DB AG
 Akkreditiert nach DIN EN ISO/IEC 17025:2005 Die Akkreditierung gilt nur für die in der Urkunde aufgeführten Prüfverfahren
- Sachkundig hinsichtlich Probenahmen gem. LAGA PN 98

- Mitglied im DUR Bundesverband unabhängiger Institute für bautechnische Prüfungen e.V..
- Gesellschafter der bupZert GmbH, Berlin.

Prüfbericht	nach	DIN EN	12620	(EN	12620)	Beton
				1100		

Prüfbericht-Nr.:	1448/7-B/20	Prüfberichtdatum:	29.06.2020							
Anschrift des Werkes:	August Oppermann Kiesgewinnungs- und Vertriebs- GmbH, Kieswerk Felsberg-Lohre									
	Forstweg 9, 34587 Felsberg									
Werk:	Felsberg	Petrographischer Typ:	Quartär-Sand, Quartär-Kies							
Material:	Rundkorn									
Art der Güteüberwachun	g: Freiwillige Güteüberwachung									
Erstprüfung/Eignungsna	chweis bzw. letzte 2-jährliche Güteüberwachung:	Prüfbericht Nr. 1448/7-E	3/19 vom 02.07.2019							
Überwachungszeitraum:	1. Halbjahr 2020									
Zulassungszeitraum:	2. Halbjahr 2020									

Angaben über die Probenahme nach DIN EN 932-1:

Kieswerk Felsberg Ort:

Teilnehmer: Herr Dobrowolski (Werk), Herr Bilge (Dr. Moll GmbH & Co. KG)

Nr.	Sortennummer	Lieferkörnung [mm]	Datum der Probenahme	Entnahmestelle	Anwendungsbereich
1	1	1 0/1 12.05.2020		Halde	GK für Beton
2	2	0/2	12.05.2020	Halde	GK für Beton
3	4	2/8	12.05.2020	Halde	GK für Beton
4	6	8/16	12.05.2020	Halde	GK für Beton
5	7	16/32	12.05.2020	Halde	GK für Beton

Bemerkungen: keine

Verteiler -	Fa.	Fa.	PTW	
verteller	1 x Orig.	1 x pdf	1 x pdf	

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände.

Der Prüfbericht umfasst _______ Seiten.

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 2/7 zum Prüfbericht Nr: 1448/7-B/20

vom: 29.06.2020

Geometrische Anforderungen

Gesteinskörnungen (d/D)		[mm]			0/1	0/2				
					Kate	gorie		i	Kate	gorie
Korngrößenverte	eilung	01-10	DIN EN	933-1			DIN EN 933-1			
			Soll	Ist	Soll	Ist	Soll	Ist	Soll	lst
Gehalt an Feinar	nteil (< 0,063	mm)								
Gehalt an Feinar	nteil	[M%]	≤3	2.9	f ₃	f ₃	≤3	1.7	f ₃	f ₃
Korngrößenverteilung Siebgröße [mm]			Rückst.	Σ			Rückst.	Σ	10 - 1 - 1 - 1 - 1 - 2	
< 0.125		[M%]	11.9	12			2.6	3		
0.125 - 0.25		[M%]	38.4	50			5.1	8		
0.25 - 0.5		[M%]	33.7	84			29.8	38		
0.5 - 1.0		[M%]	13.9	98			42.2	80		
1.0 - 1.4		[M%]	1.4	99			6.7	86		
1.4 - 2.0		[M%]	0.5	100			7.5	94		
2.0 - 2.8		[M%]					5.4	99		325
2.8 - 4.0		[M%]					0.6	100		
Überkorn			Soll	Ist			Soll	Ist		
bis Siebgröße	D	[mm]	1.0				2.0			
E-25	-	[M%]	85-99	98			85-99	94	0.05	
bis Siebgröße	1,4 D	[mm]	1.4		G _F 85	G _F 85	2.8		G _F 85	G _F 85
		[M%]	95-100	99			95-100	99		
bis Siebgröße	2 D	[mm]	2.	0			4.	.0		
858		[M%]	100	100			100	100		
Werkstypische 1	Foleranzen		Soll	Ist			Soll	Ist		
bei Siebgröße 0	.063	[mm]	0-3	3		1	0-3	2		
bei Siebgröße 0	.25	[mm]	0-50	50			0-30	8		
bei Siebgröße 1	.0	[mm]	93-99	98			72-92	80		
bei Siebgröße 2	.0	[mm]					89-99	94	5-110	
Grobheit/Feinhe	it		Is	st			Is	st		
Feinheitsmodul		[M%]	1.	.6	_	MF/FF	2.	.8	-	CF/MF
Siebdurchgang 0	.5 mm	[M%]	8	4	_	FP	3	8		CP/MP

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

zum Prüfbericht Nr: 1448/7-B/20 vom: 29.06.2020

Geometrische Anforderungen

Gesteinskörnung	gen (d/D) [mm]	18	2/8 Kategorie					8/16 Kategorie		
Korngrößenverte	eilung		DIN EN	N 933-1	Nate	yone	DIN EN	933-1	Kategorie		
			Soll	Ist	Soll	Ist	Soll	Ist	Soll	Ist	
Gehalt an Feinar	nteil (< 0	,063 mm)						101	0011	151	
Gehalt an Feinar	nteil	[M%]	≤1,5	1.4	f _{1,5}	f _{1.5}	≤1,5	0.2	f _{1.5}	f _{1,5}	
Korngrößenverte Siebgröße [mm]			Rückst. Σ			Rückst.	Σ	1 1,0	1,5		
< 1.0		[M%]	2.3	2							
1.0 - 2.0		[M%]	8.4	11	1						
2.0 - 2.8		[M%]	17.4	28	1						
2.8 - 4.0		[M%]	19.8	48	1		0.51)	1 1)			
4.0 - 5.6	Witter - William	[M%]	27.8	76	1		0.1	1			
5.6 - 8.0		[M%]	21.8	98	1		3.7	4			
8.0 - 11.2		[M%]	2.5	100	1		31.3	36			
11.2 - 16.0		[M%]	0.0	100	1		57.7	93			
16.0 - 22.4		[M%]			1		6.7	100			
22.4 - 31.5		[M%]			1		0.0	100			
Unterkorn			Soll	Ist			Soll	Ist			
bis Siebgröße	d/2	[mm]	1	.0	1		4.	0			
<u> </u>		[M%]	0-5	2	1		0-5	1			
bis Siebgröße	d	[mm]	2	.0	1		8.	0			
3950		[M%]	0-20	11			0-20	4			
Überkorn			Soll	Ist	G _C 85/20	G _C 85/20	Soll	Ist	G _C 85/20	G _C 85/20	
bis Siebgröße	D	[mm]	8	.0			16	.0	1.55		
047-1		[M%]	85-99	98			85-99	93			
bis Siebgröße	1,4 D	[mm]	11	.2			22.4				
27(25)	500730	[M%]	98-100	100			98-100				
bis Siebgröße	2 D	[mm]	16.0		1		31.5		1		
2-11 Tel 26-11 Tel 27-11		[M%]	100	100			100	100			
Kornformkennza	hl	DIN EN 933-4	lst		Prüfdatur	Prüfdatum 05.2020		Ist		Prüfdatum 05.2020	
		[M%]	1	4	SI ₅₅	SI ₁₅	18	3	SI ₅₅	SI ₂₀	

¹⁾ und kleiner

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

vom: 29.06.2020

zum Prüfbericht Nr: 1448/7-B/20

Geometrische Anforderungen

Gesteinskörnungen (d/D) [mm]			12		16/32 Kate	gorie		i	Kate	gorie
Korngrößenvert	eilung		DIN EN	N 933-1						
			Soll	Ist	Soll	Ist	Soll	Ist	Soll	Ist
Gehalt an Feinar	nteil (< 0,063	mm)								
Gehalt an Feinar	nteil	[M%]	≤1,5	0.0	f _{1,5}	f _{1,5}				
Korngrößenverte Siebgröße [mm]		===	Rückst.	Σ			Rückst.	Σ		
< 8.0		[M%]	0.4	0						
8.0 - 11.2		[M%]	0.6	1						
11.2 - 16.0		[M%]	3.4	4	1					
16.0 - 22.4		[M%]	30.9	35						
22.4 - 31.5		[M%]	57.3	93	1					
31.5 - 45.0		[M%]	7.4	100	1					
45.0 - 56.0		[M%]	0.0	100						
56.0 - 63.0		[M%]	0.0	100						
Unterkorn			Soll	Ist			Soll	Ist		
bis Siebgröße	d/2	[mm]	8.0		7					
		[M%]	0-5	0	1					
bis Siebgröße	d	[mm]	16	6.0						
		[M%]	0-20	4						
Überkorn			Soll	Ist	G _C 85/20	G _C 85/20	Soll	Ist		
bis Siebgröße	D	[mm]	31	.5		35555				
28. Amil 14.00 - 2000 Co. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		[M%]	85-99	93						
bis Siebgröße	1,4 D	[mm]	45	5.0						
		[M%]	98-100	100						
bis Siebgröße	2 D	[mm]	63.0							
2000	\$1	[M%]	100	100						
Kornformkennza	ahl DIN	EN 933-4	ls	st	Prüfdatur	n 06.2020	Is	t		
50 91115 - 200 (200) 150 - 200 (200)		[M%]	1	7	SI ₅₅	SI ₂₀				

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 5/7

zum Prüfbericht Nr:

1448/7-B/20

vom: 29.06.2020

Conc. Str. Zum Flübendit Nr. 1440/7-b/20									vom: 29.	.06.2020	
Physikalische Anforderungen		Gesteins- körnung [mm]/ Prüfdatum	Prüf- körnung [mm]		Einze	lwert/e			Ist- wert	Soll / Sollwert- Kategorie	lst / Istwert- Kategorie
Rohdichte, Was	seraufnahm	e Pyknomet	erverfahre	n							
	Rohdichte ρrd [Mg/m³]			2.65	2.65	2.65	2.65	i.M.	2.65	1	2.65
DIN EN 1097-6	Rohdichte ρa [Mg/m³]		0/1	2.66	2.66	2.66	2.66	i.M.	2.66	1	2.66
	Rohdichte ρssd [Mg/m³]	05.2020		2.65	2.65	2.65	2.65	i.M.	2.65	1	2.65
Wasser- aufnahme [0.2	0.2	0.2	0.2	i.M.	0.2	1	0.2
	Rohdichte prd [Mg/m³] Rohdichte			2.64	2.64	2.64	2.64	i.M.	2.64	1	2.64
DIN EN 1097-6	ρα [Mg/m³]	0/2 05.2020	0/2	2.66	2.66	2.66	2.66	i.M.	2.66	1	2.66
	Rohdichte ρssd [Mg/m³]	05.2020		2.64	2.64	2.64	2.64	i.M.	2.64	1	2.64
	Wasser- aufnahme [%]			0.3	0.3	0.3	0.3	i.M.	0.3	1	0.3
	Rohdichte ρrd [Mg/m³]		2/8	2.50	2.50	2.50	2.50	i.M.	2.50	1	2.50
DIN EN 1097-6	Rohdichte ρa [Mg/m³]	2/8		2.62	2.62	2.62	2.62	i.M.	2.62	1	2.62
	Rohdichte ρssd [Mg/m³]	05.2020		2.54	2.54	2.54	2.54	i.M.	2.54	1	2.54
	Wasser- aufnahme [%]			1.9	1.9	1.9	1.9	i.M.	1.9	1	1.9
	Rohdichte ρrd [Mg/m³]		8/16	2.51	2.51	2.51	2.51	i.M.	2.51	1	2.51
DIN EN 1097-6	Rohdichte ρa [Mg/m³]	8/16		2.61	2.61	2.61	2.61	i.M.	2.61	1	2.61
	Rohdichte ρssd [Mg/m³]	05.2020		2.55	2.55	2.55	2.55	i.M.	2.55	1	2.55
	Wasser- aufnahme [%]			1.5	1.5	1.5	1.5	i.M.	1.5	1	1.5
	Rohdichte ρrd [Mg/m³]		16/31,5	2.51	2.51	2.51	2.51	i.M.	2.51	1	2.51
DIN EN 1097-6	Rohdichte ρa [Mg/m³]	05.2020		2.59	2.59	2.59	2.59	i.M.	2.59	1	2.59
DIN EN 1037-0	Rohdichte ρssd [Mg/m³]			2.54	2.54	2.54	2.54	i.M.	2.54	1	2.54
	Wasser- aufnahme [%]			1.1	1.1	1.1	1.1	i.M.	1.1	1	1.1
Widerstand geg	en Zertrümn	nerung (Sch	lagzertrüm	merung	swert)						
DIN EN 1097-2, Abs. 6	[M%]	8/16	8/12,5	20.10	23	.76	23.07	i.M.	22.3	SZNR	SZ ₂₂
		05.2019	Rohdichte p	p [Mg/m	n³] 2.55	5	Kornfor	m [M%]	12		k
Widerstand geg	en Frostbea	nspruchung									
DIN EN 1367-1	[M%]	8/16 05.2019	8/16	0.2	0	.4	0.3	i.M.	0.3	F ₄	F ₁
		00.2010	Prüfflüssigke	eit: W	/asser						
Frost-Tausalz-W	/iderstand										
DIN EN 1367-6	[M%]	8/16 05.2019	8/16	3.1	3	.1	3.0	i.M.	3.1	≤8	≤8
		00.2010	Prüfflüssigke	eit: 19	%ige NaC	I-Lösung					
Magnesiumsulfa		8/16									
DIN EN 1367-2	[M%]	05.2019	10/14	12	.5	1	3.7	i.M.	13	MSNR	MS ₁₈
Chamicaha		0			Secretary Pro					(18	überwac
Chemische Anforderung	jen	Gesteins- körnung [mm]/ Prüfdatum	Prüf- körnung [mm]		Einze	lwert/e			lst- wert	Soll Sollwert- Kategerie	lst./ Istwert- Kategorie
Vorhandensein	von Humins		L. Consti							Villa	1
DIN EN 1744-1, Abschnitt 15.1	[-]	0/1 05.2020	0/1	heller a	als Fart	bezug	slösung		ja	ja	bestanden

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60

Telefax: (05136) 8006-74

Seite: 6/7

zum Prüfbericht Nr:

1448/7-B/20

vom: 29.06.2020 Chemische Gesteins-Prüf-Soll / Anforderungen körnung Ist / Istkörnung Einzelwert/e Sollwert-Istwert-[mm]/ wert Prüfdatum [mm] Kategorie Kategorie Vorhandensein von Huminsäure DIN EN 1744-1, 0/2 0/2 heller als Farbbezugslösung Abschnitt 15.1 05.2020 ia ja bestanden DIN EN 1744-1, 2/8 [-] 2/8 heller als Farbbezugslösung Abschnitt 15.1 ja ja bestanden 05.2020 Gehalt an groben organischen Verunreinigungen (leichtgewichtige, grobe organische Bestandteile) DIN EN 1744-1, 0/1 [M.-%] 0.00 0 00 ≤0,5 ≤0,5 Abs. 14.2 05.2020 DIN EN 1744-1, Abs. 14.2 0/2 [M.-%]0/2 0.00 0.00 ≤0.5 < 0.5 05.2020 DIN EN 1744-1, 2/8 [M.-%]2/8 0.00 0.00 ≤0.1 ≤0.1 Abs. 14.2 05.2020 DIN EN 1744-1, 8/16 [M.-%]16/31,5 0.00 0.00 ≤0.1 ≤0.1 Abs. 14.2 05.2020 DIN EN 1744-1, 16/32 [M.-%]16/31,5 0.00 0.00 ≤0.1 Abs. 14.2 < 0.1 05.2020 Alkali-Kieselsäure-Reaktivität 0/1 Alkali-Richtlinie 0/1 FΙ 05.2020 Die GK 0/1 wird aus einem hinsichtlich der petrographischen Zusammensetzung unbedenklichen Vorkommen gewonnen, so dass nach DAfStb-Richtlinie "Vorbeugende Maßnahmen gegen schädigende Alkalireaktion im Beton" vom Oktober 2013 die Unbedenklichkeit des Materials ohne Prüfung auf Alkaliempfindlichkeit gegeben ist. 0/2 Alkali-Richtlinie [-] ΕI 05.2020 Die GK 0/2 wird aus einem hinsichtlich der petrographischen Zusammensetzung unbedenklichen Vorkommen gewonnen, so dass nach DAfStb-Richtlinie "Vorbeugende Maßnahmen gegen schädigende Alkalireaktion im Beton" vom Oktober 2013 die Unbedenklichkeit des Materials ohne Prüfung auf Alkaliempfindlichkeit gegeben ist. Alkali-Richtlinie EI 05.2020 Die GK 2/8 wird aus einem hinsichtlich der petrographischen Zusammensetzung unbedenklichen Vorkommen gewonnen, so dass nach DAfStb-Richtlinie "Vorbeugende Maßnahmen gegen schädigende Alkalireaktion im Beton" vom Oktober 2013 die Unbedenklichkeit des Materials ohne Prüfung auf Alkaliempfindlichkeit gegeben ist. In der untersuchten Probe 4/8 der GK 2/8 wurden kein Flint und Opalsandstein gefunden. Alkali-Richtlinie ΕI 05.2020 Die GK 8/16 wird aus einem hinsichtlich der petrographischen Zusammensetzung unbedenklichen Vorkommen gewonnen, so dass nach DAfStb-Richtlinie "Vorbeugende Maßnahmen gegen schädigende Alkalireaktion im Beton" vom Oktober 2013 die Unbedenklichkeit des Materials ohne Prüfung auf Alkaliempfindlichkeit gegeben ist. In der untersuchten Probe der GK 16/32 wurden kein Flint und Opalsandstein gefunden. 16/32 Alkali-Richtlinie [-] 16/32 1 EI 05.2020 Die GK 16/32 wird aus einem hinsichtlich der petrographischen Zusammensetzung unbedenklichen Vorkommen gewonnen, so dass nach DAfStb-Richtlinie "Vorbeugende Maßnahmen gegen schädigende Alkalireaktion im Beton" vom Oktober 2013 die Unbedenklichkeit des Materials ohne Prüfung auf Alkaliempfindlichkeit gegeben ist. In der untersuchten Probe der GK 16/32 wurden kein Flint und Opalsandstein gefunden. Petrographische Beschreibung 8/16 **DIN EN 932-3** [-] 8/16 05.2019 Der Kies setzt sich wie folgt zusammen: Kieselschiefer, schwarz (22,6 M.-%), Quarz, milchig (15,4 M.-%), Quarzit/Sandstein, paläozoisch, grau, braun, z.T. kieselig (58,2 M.-%) und Sandstein, mesozoisch, porös, bunt (3,8 M.-%). 16/32 **DIN EN 932-3** [-] 16/32 05.2019 Der Kies setzt sich wie folgt zusammen: Kieselschiefer, schwarz (29,2 M.-%), Quarz, milchig (9,3 M.-%), Quarzit/Sandstein, paläozoisch, grau, braun, z.T. kieselig (56,7 M.-%) und Sandstein, mesozoisch, porös, bunt (4,8 M.-%). Gehalt an wasserlöslichem Chlorid DIN EN 1744-1, 0/2 [M.-%] < 0.001 < 0.001 ≤0:04 ≤0.04 überwac Abs. 7 05.2019 Gehalt an säurelöslichem Sulfat DIN EN 1744-1, 0/2 [M.-%] 0/2 < 0.070 < 0.070 ASO 8 Abs. 12 05.2020 Gesamtschwefelgehalt DIN EN 1744-1, 0/2 [M.-%] 0/2 < 0.080 < 0.080 0≤1 Abs. 11 05.2020

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

vom: 29.06.2020

Seite: 7/7 zum Prüfbericht Nr: 1448/7-B/20

Allgemeine Angaben (Freiwillige Güteüberwachung)

1	Konformitätsnachweis	
1.1	Konformitätsnachweisverfahren	System 2+
1.2	Codenummer des Zertifizierers/Überwachers (notified body)	1284
1.2a	Name der zertifizierenden Institution	BÜV Hessen-Rheinland-Pfalz
1.3	Ist die WPK zertifiziert/überwacht?	Ja
1.4	Nr. des WPK-Zertifikates	1284-CPR-H/049/3
1.5	Ausstellungsdatum des WPK-Zertifikates:	06.06.2017
1.6	WPK-Beauftragter:	Herr Dobrowolski
2	Prüfung	
2.1	Verantwortlicher/Durchführender der WPK (intern):	PTW
2.2	Ort/Adresse des Labors für die WPK (intern):	Witzenhausen
2.3	Wurde die Probenahme entsprechend den Anforderungen der DIN EN 932-1 durchgeführt?	Ja
2.4	Werden alle verlangten Prüfungen der WPK (intern) im erforderlichen Prüfrhythmus durchgeführt?	Ja
2.5	Werden die geforderten Aufzeichnungen der "WPK" ordnungsgemäß geführt?	Ja
3	Lieferschein	
3.1	Enthält der Lieferschein alle verlangten Angaben?	Ja
3.2	Enthält der Lieferschein alle notwendigen Zeichen?	Ja
4	Herstellwerk	
4.1	Entspricht die Lagerung der Gesteinskörnungen den Anforderungen?	Ja
4.2	Werden die Silos, Halden, Boxen etc. gekennzeichnet?	Ja

Dr. Moll GmbH & Co KG Stelly Prüfstellenleiter Dipl. Geol. R. Lenhard

Dr. Moll GmbH & Co. KC Geschäftsführer

Dipl.-Geol. M. Quakenack

eüberwach