

Sattlerstr. 42

Tel.: 05136 / 8006-60

http://www.drmoll.de e-mail: webmaster@drmoll.de

30916 Isernhagen FAX: 05136 / 8006-74

· Anerkannte Prüfstelle nach RAP Stra für Baustoffe und Baustoffgemische im Straßenbau

	Prüfungsart		Fachgebiet									
		Α	BB	BE	C	D	F	G	Н	- 1		
0	Baustoffeingangsprüfungen	1000			C0	D0		FOR ST	10000	Fixe		
1	Eignungsprüfungen	A1	#10E33	USE SEE	-	200	1000	Part of	H1	- 11		
2	Fremdüberwachungen		TO THE REAL PROPERTY.			NAME OF	F2	P. 1		12		
3	Kontrollprüfungen	A3	BB3	BE3	C3	D3	F3	G3	НЗ	13		
4	Schiedsuntersuchungen	A4	BB4	BE4	C4	D4	F4	04	H4	14		

August Oppermann

Dr. Moll GmbH & Co. KG, Sattlerstraße 42, 30916 Isernhagen

Kiesgewinnungs- und Vertriebs- GmbH

Brückenstr. 12 34346 Hann, Münden

- Bauaufsichtliche Anerkennung nach Landesbauordnung (NDS 07) als ÜZ-Stelle für Gesteinskörnungen mit Alkaliempfindlichkeit nach Alkali-Richtlinie
 Anerkannte Sachverständigenstelle der DB AG
 Akkreditiert nach DIN EN ISO/IEC 17025:2005
- Die Akkreditierung gilt nur für die in der Urkunde aufgeführten Prüfverfahren
- Sachkundig hinsichtlich Probenahmen gem. LAGA PN 98

DAkkS Deutsche Akkreditierungsstelle D-PL-20229-01-00

• Mitglied im bup - Bundesverband unabhängiger Institute für bautechnische Prüfungen e.V..

Gesellschafter der bupZert GmbH, Berlin.

Prüfbericht	nach	DIN EN	12620	(EN	12620)	Beton
				-		

1448/13-1-B/20	Prüfberichtdatum:	04.01.2021
August Oppermann Kiesgewinnungs- und	Vertriebs- GmbH, Kiesw	erk Felsberg-Lohre
Forstweg 9, 34587 Felsberg		
Felsberg	Petrographischer Typ:	Quartär-Sand, Quartär-Kies
Rundkorn		
g: Freiwillige Güteüberwachung		
chweis bzw. letzte 2-jährliche Güteüberwachung:	Prüfbericht Nr. 1448/7-E	3/19 vom 02.07.2019
2. Halbjahr 2020		
1. Halbjahr 2021		
	August Oppermann Kiesgewinnungs- und Forstweg 9, 34587 Felsberg Felsberg Rundkorn g: Freiwillige Güteüberwachung chweis bzw. letzte 2-jährliche Güteüberwachung: 2. Halbjahr 2020	August Oppermann Kiesgewinnungs- und Vertriebs- GmbH, Kiesw Forstweg 9, 34587 Felsberg Felsberg Petrographischer Typ: Rundkorn g: Freiwillige Güteüberwachung chweis bzw. letzte 2-jährliche Güteüberwachung: Prüfbericht Nr. 1448/7-E 2. Halbjahr 2020

Angaben über die Probenahme nach DIN EN 932-1:

Ort: Kieswerk Felsberg

Teilnehmer: Herr Brill (Werk), Herr Beckmann (Dr. Moll GmbH & Co. KG)

Nr.	Sortennummer	Lieferkörnung [mm]	Datum der Probenahme	Entnahmestelle	Anwendungsbereich
1	1	0/1	22.09.2020	Halde	GK für Beton
2	2	0/2	22.09.2020	Halde	GK für Beton
3	4	2/8	22.09.2020	Halde	GK für Beton
4	6	8/16	22.09.2020	Halde	GK für Beton
5	7	16/32	22.09.2020	Halde	GK für Beton
					===

Bemerkungen: keine

Fa Fa PTW Verteiler 1 x Orig. 1 x pdf 1 x pdf

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände.

Der Prüfbericht umfasst ________ Seiten.

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 2/7

zum Prüfbericht Nr:

1448/13-1-B/20

vom: 04.01.2021

Geometrische Anforderungen

Gesteinskörnungen (0/1 Kategorie			0/2 Kategorie					
Korngrößenverteilung	g	DIN EN	N 933-1		T T		DIN EN 933-1		1
·		Soll	Ist	Soll	Ist	Soll	Ist	Soll	lst
Gehalt an Feinanteil (< 0,063 mm)								
Gehalt an Feinanteil	[M%]	≤3	2.2	f ₃	f ₃	≤3	1.0	f ₃	f ₃
Korngrößenverteilung Siebgröße [mm]	9	Rückst.	Σ			Rückst.	Σ		
< 0.125	[M%]	6.7	7			2.2	2		
0.125 - 0.25	[M%]	36.4	43			6.7	9		
0.25 - 0.5	[M%]	40.4	84			25.1	34		
0.5 - 1.0	[M%]	13.7	97			46.2	80		
1.0 - 1.4	[M%]	1.6	99			8.2	88		
1.4 - 2.0	[M%]	0.8	100			7.9	96		
2.0 - 2.8	[M%]					3.4	100		
2.8 - 4.0	[M%]					0.3	100		
Überkorn		Soll	Ist			Soll	Ist		
bis Siebgröße D	[mm]	1.0				2.0			
	[M%]	85-99	97	C 0E	C 05	85-99	96	C 05	C 05
bis Siebgröße 1,	4 D [mm]	1.4		G _F 85	G _F 85	2	.8	G _F 85	G _F 85
	[M%]	95-100	99			95-100	100		
bis Siebgröße 2	D [mm]	2	.0			4	.0		
\$159 t ==	[M%]	100	100			100	100		
Werkstypische Tolera	anzen	Soll	Ist			Soll	Ist		
bei Siebgröße 0.063	[mm]	0-3	2			0-3	1		
bei Siebgröße 0.25	[mm]	0-50	43			0-30	9		
bei Siebgröße 1.0	[mm]	93-99	97			72-92	80		
bei Siebgröße 2.0	-				89-99	96			
Grobheit/Feinheit		ls ls	st			l:	st		XXXXX
Feinheitsmodul	[M%]	1	.7		MF/FF	2	.8	_	CF/MF
Siebdurchgang 0.5 mn	n [M%]	8	34	_	FP	3	4	=	CP/MP

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 3/7

zum Prüfbericht Nr:

1448/13-1-B/20

vom: 04.01.2021

Geometrische Anforderungen

Gesteinskörnungen (d/D) [mm]			2/8 Kategorie				í	8/16	norie	
Korngrößenverteilung			DIN EN	933-1	rtategorie		DIN EN 933-1		Kategorie	
g. cc	9		Soll	Ist	Soll	Ist	Soll	Ist	Soll	lst
Gehalt an Feinante	il (< 0,0	63 mm)								
Gehalt an Feinante		[M%]	≤1,5	0.2	f _{1,5}	f _{1,5}	≤1,5	0.3	f _{1,5}	f _{1,5}
Korngrößenverteilu Siebgröße [mm]	ıng		Rückst.	Σ	1,0	1,0	Rückst.	Σ	1,0	1,0
< 1.0		[M%]	0.3	0						
1.0 - 2.0		[M%]	1.0	1	1					
2.0 - 2.8		[M%]	5.6	7	1					
2.8 - 4.0		[M%]	13.1	20	1		1.5 ¹⁾	2 1)		
4.0 - 5.6		[M%]	32.3	52	1		2.3	4		
5.6 - 8.0		[M%]	45.0	97	1		15.1	19		
8.0 - 11.2		[M%]	2.7	100	1		45.6	65		
11.2 - 16.0		[M%]	0.0	100	1		34.0	99		
16.0 - 22.4		[M%]			1		1.5	100		
22.4 - 31.5		[M%]			1		0.0	100		
Unterkorn			Soll	Ist			Soll	Ist		
bis Siebgröße	d/2	[mm]	1.0		1		4.0			
		[M%]	0-5	0			0-5	2		
bis Siebgröße	d	[mm]	2.	0			8.	0		
THE RESIDENCE OF THE PARTY OF T		[M%]	0-20	1			0-20	19		
Überkorn			Soll	Ist	G _C 85/20	G _C 85/20	Soll	Ist	G _C 85/20	G _C 85/20
bis Siebgröße	D	[mm]	8.	0			16	.0		
		[M%]	85-99	97			85-99	99		
bis Siebgröße	1,4 D	[mm]	11	.2			22	.4		
2-247		[M%]	98-100	100	1		98-100	100		
bis Siebgröße	2 D	[mm]	16.0]		31.5		1	
		[M%]	100	100			100	100		
Kornformkennzahl	D	IN EN 933-4	ls	st	Prüfdatur	Prüfdatum 09.2020		Ist		n 09.2020
		[M%]	1	3	SI ₅₅	SI ₁₅	1	9	SI55	SI ₂₀

¹⁾ und kleiner

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 4/7

zum Prüfbericht Nr:

1448/13-1-B/20

vom: 04.01.2021

Geometrische Anforderungen

Gesteinskörnung	en (d/D)	[mm]			16/32 Kategorie			i	Kate	gorie
Korngrößenverte	Korngrößenverteilung			DIN EN 933-1						
			Soll	Ist	Soll	Ist	Soll	Ist	Soll	lst
Gehalt an Feinan	teil (< 0,063	3 mm)								
Gehalt an Feinan	teil	[M%]	≤1,5	0.4	f _{1,5}	f _{1,5}				1
Korngrößenverte Siebgröße [mm]	ilung	* * · · · ·	Rückst.	Σ			Rückst.	Σ		
< 8.0		[M%]	1.0	1						
8.0 - 11.2		[M%]	0.5	2	1					
11.2 - 16.0		[M%]	11.8	13	1					
16.0 - 22.4		[M%]	49.8	63						
22.4 - 31.5		[M%]	33.1	96						
31.5 - 45.0 [M%]			3.8	100	1					
45.0 - 56.0 [M%]		[M%]	0.0	100			_ u 114_ 211			
56.0 - 63.0 [M%]		0.0	100			L				
Unterkorn			Soll	Ist			Soll	Ist		
bis Siebgröße	d/2	[mm]	8.	0						
		[M%]	0-5	1						
bis Siebgröße	d	[mm]	16	.0						
		[M%]	0-20	13						
Überkorn			Soll	lst	G _C 85/20	G _C 85/20	Soll	Ist		
bis Siebgröße	D	[mm]	31	.5		60000				
		[M%]	85-99	96						
bis Siebgröße	1,4 D	[mm]	45	.0						
		[M%]	98-100	100						
bis Siebgröße	2 D	[mm]	63.0							
10/26	×	[M%]	100	100]	
Kornformkennza	hl DIN	EN 933-4	ls	st	Prüfdatur	n 09.2020	Is	t		
		[M%]	2	2	SI ₅₅	SI ₄₀				

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 5/7 zum Prüfbericht Nr: 1448/13-1-B/20 vom: 04.01.2021

Physikalische Anforderungen		Gesteins- körnung [mm]/ Prüfdatum	Prüf- körnung [mm]		Einze	lwert/e			lst- wert	Soll / Sollwert- Kategorie	lst / Istwert- Kategorie
Rohdichte, Wass	seraufnahm	e Pyknomet	erverfahrer	1							
	Rohdichte prd [Mg/m³] Rohdichte			2.65	2.65	2.65	2.65	i.M.	2.65	1	2.65
DIN EN 1097-6	ρα [Mg/m³]	0/1 05.2020	0/1	2.66	2.66	2.66	2.66	i.M.	2.66	1	2.66
	Rohdichte pssd [Mg/m³]	03.2020		2.65	2.65	2.65	2.65	i.M.	2.65	1	2.65
	Wasser- aufnahme [%]			0.2	0.2	0.2	0.2	i.M.	0.2	1	0.2
	Rohdichte prd [Mg/m³]			2.64	2.64	2.64	2.64	i.M.	2.64	1	2.64
DIN EN 1097-6	Rohdichte ρa [Mg/m³]	0/2	0/2	2.66	2.66	2.66	2.66	i.M.	2.66	1	2.66
DIN EN 1097-0	Rohdichte pssd [Mg/m³]	05.2020	0/2	2.64	2.64	2.64	2.64	i.M.	2.64	1	2.64
	Wasser- aufnahme [%]			0.3	0.3	0.3	0.3	i.M.	0.3	1	0.3
	Rohdichte prd [Mg/m³]			2.50	2.50	2.50	2.50	i.M.	2.50	1	2.50
DIN EN 4007 0	Rohdichte ρa [Mg/m³]	2/8	0/0	2.62	2.62	2.62	2.62	i.M.	2.62	1	2.62
DIN EN 1097-6	Rohdichte pssd [Mg/m³]	05.2020	2/8	2.54	2.54	2.54	2.54	i.M.	2.54	1	2.54
	Wasser- aufnahme [%]			1.9	1.9	1.9	1.9	i.M.	1.9	1	1.9
	Rohdichte prd [Mg/m³]			2.51	2.51	2.51	2.51	i.M.	2.51	1	2.51
DIN EN 1097-6	Rohdichte pa [Mg/m³]	8/16 05.2020	8/16	2.61	2.61	2.61	2.61	i.M.	2.61	1	2.61
	Rohdichte pssd [Mg/m³]			2.55	2.55	2.55	2.55	i.M.	2.55	1	2.55
	Wasser- aufnahme [%]			1.5	1.5	1.5	1.5	i.M.	1.5	1	1.5
	Rohdichte prd [Mg/m³]			2.51	2.51	2.51	2.51	i.M.	2.51	1	2.51
	Rohdichte ρa [Mg/m³]	16/32		2.59	2.59	2.59	2.59	i.M.	2.59	,	2.59
DIN EN 1097-6	Rohdichte pssd [Mg/m³]	05.2020	16/31,5	2.54	2.54	2.54	2.54	i.M.	2.54	1	2.54
	Wasser- aufnahme [%]			1.1	1.1	1.1	1.1	i.M.	1.1	1	1.1
Widerstand gege		nerung (Sch	lagzertrüm	meruna	rswert	1		37/55/200	. 1000		
DIN EN 1097-2, Abs. 6	[M%]	8/16 05.2019	8/12,5	20.10		3.76	23.07	i.M.	22.3	sz _{NR}	SZ ₂₂
		00.2010	Rohdichte p	p [Mg/n	n³] 2.5	5	Kornfor	m [M%]	12		
Widerstand geg	en Frostbea	nspruchung									
DIN EN 1367-1	[M%]	8/16 05.2019	8/16	0.2	(0.4	0.3	i.M.	0.3	F ₄	F ₁
			Prüfflüssigke	eit: V	Vasser						
Frost-Tausalz-W			80000	8 8		T			18250		
DIN EN 1367-6	[M%]	8/16 05.2019	8/16	3.1		3.1	3.0	i.M.	3.1	≤8	≤8
Magnesiumsulfa	twort		Prüfflüssigke	eit: 1	%ige Na	CI-Lösung					
DIN EN 1367-2	[M%]	8/16 05.2019	10/14	12	2.5	1	3.7	i.M.	13	MSNR	MS18
										1500	Derwac/
Chemische Anforderung	jen	Gesteins- körnung [mm]/ Prüfdatum	Prüf- körnung [mm]		Einze	elwert/e			Ist- wert	Soll / Sollwert- Kategorie	Ist / Istwert- Kategorie
Vorhandensein	von Humins									J. O.	out
DIN EN 1744-1, Abschnitt 15.1	[-]	0/1 09.2020	0/1	heller	als Far	bbezug	slösung		ja	ja	bestanden

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 6/7 zum Prüfbericht Nr: 1448/13-1-B/20 vom: 04.01.2021

Chemische Anforderungen		Gesteins- körnung [mm]/ Prüfdatum	Prüf- körnung [mm]	Einzelwert/e	lst- wert	Soll / Sollwert- Kategorie	Ist / Istwert- Kategorie
Vorhandensein v	on Humins	säure					
DIN EN 1744-1, Abschnitt 15.1	[-]	0/2 09.2020	0/2	heller als Farbbezugslösung	ja	ja	bestanden
DIN EN 1744-1, Abschnitt 15.1	[-]	2/8 09.2020	2/8	heller als Farbbezugslösung	ja	ja	bestanden
	organisch	nen Verunrei	nigungen (leichtgewichtige, grobe orga	nische Bestan	dteile)	·
DIN EN 1744-1, Abs. 14.2	[M%]	0/1 09.2020	0/1	0.00	0.00	≤0,5	≤0,5
DIN EN 1744-1, Abs. 14.2	[M%]	0/2 09.2020	0/2	0.00	0.00	≤0.5	≤0.5
DIN EN 1744-1, Abs. 14.2	[M%]	2/8 09.2020	2/8	0.00	0.00	≤0.1	≤0.1
DIN EN 1744-1, Abs. 14.2	[M%]	8/16 09.2020	16/31,5	0.00	0.00	≤0.1	≤0.1
DIN EN 1744-1, Abs. 14.2	[M%]	16/32 09.2020	16/31,5	0.00	0.00	≤0.1	≤0.1
Alkali-Kieselsäu	e-Reaktivit	tät					
Alkali-Richtlinie	[-]	0/1 09.2020	0/1			1	ΕI
nach DAfStb-Richtl	inie "Vorbeug	ende Maßnahr	nen gegen s	n Zusammensetzung unbedenklich chädigende Alkalireaktion im Beton findlichkeit gegeben ist.	en Vorkommen g " vom Oktober 20	ewonnen, so da 013 die	ISS
Alkali-Richtlinie	[-]	0/2 09.2020	0/2			1	ΕI
nach DAfStb-Richtl	inie "Vorbeug	gende Maßnahr	nen gegen s	n Zusammensetzung unbedenklich chädigende Alkalireaktion im Beton findlichkeit gegeben ist.	en Vorkommen g " vom Oktober 2	ewonnen, so da 013 die	iss
Alkali-Richtlinie	[-]	2/8 09.2020	2/8			1	ΕI
nach DAfStb-Richtl Unbedenklichkeit d	inie "Vorbeug es Materials (gende Maßnahr ohne Prüfung a	men gegen s uf Alkaliemp	n Zusammensetzung unbedenklich chädigende Alkalireaktion im Beton findlichkeit gegeben ist. und Opalsandstein gefunden.	en Vorkommen g " vom Oktober 2	ewonnen, so da 013 die	ISS
Alkali-Richtlinie	[-]	8/16 09.2020	8/16		45	1	EI
nach DAfStb-Richtl Unbedenklichkeit d	inie "Vorbeug es Materials	gende Maßnahr ohne Prüfung a	men gegen s uf Alkaliemp	en Zusammensetzung unbedenklic chädigende Alkalireaktion im Beton findlichkeit gegeben ist. nd Opalsandstein gefunden.	hen Vorkommen " vom Oktober 2	gewonnen, so d 013 die	lass
Alkali-Richtlinie	[-]	16/32 09.2020	16/32			1	EI
nach DAfStb-Richtl Unbedenklichkeit d	inie "Vorbeug es Materials	nsichtlich der po gende Maßnahr ohne Prüfung a	men gegen s luf Alkaliemp	hen Zusammensetzung unbedenkli chädigende Alkalireaktion im Betor findlichkeit gegeben ist. nd Opalsandstein gefunden.			dass
Petrographische	Beschreib	ung					
DIN EN 932-3	[-]	8/16 05.2019	8/16				
Der Kies setzt sich grau, braun, z.T. ki	wie folgt zus eselig (58,2 N	ammen: Kiesel M%) und Sand	schiefer, sch Istein, mesoz	warz (22,6 M%), Quarz, milchig (1 zoisch, porös, bunt (3,8 M%).	5,4 M%), Quar	zit/Sandstein, pa	aläozoisch,
DIN EN 932-3	[-]	16/32 05.2019	16/32				
				warz (29,2 M%), Quarz, milchig (9 zoisch, porös, bunt (4,8 M%).	9,3 M%), Quarzi	t/Sandstein, pal	äozoisch,
Gehalt an wasse	rlöslichem	Chlorid					
DIN EN 1744-1, Abs. 7	[M%]	0/2 05.2019		< 0.001	< 0.00	· ·	≤0.04
Gehalt an säurel	öslichem S	Sulfat				/218	uberwac.
	[M%]	0/2 05.2020	0/2	< 0.070	< 0.070	0.0	AS _{0,2}
DIN EN 1744-1, Abs. 12						0 1	1 编辑 1. 0 + 8 F B 1
Abs. 12	lgehalt					10 6	ACTUUM I
DIN EN 1744-1, Abs. 12 Gesamtschwefe DIN EN 1744-1, Abs. 11	gehalt [M%]	0/2 05.2020	0/2	< 0.080	< 0.080		≤1

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

vom: 04.01.2021

Seite: 7/7 zum Prüfbericht Nr: 1448/13-1-B/20

Allgemeine Angaben (Freiwillige Güteüberwachung)

	V	
1	Konformitätsnachweis	
1.1	Konformitätsnachweisverfahren	System 2+
1.2	Codenummer des Zertifizierers/Überwachers (notified body)	2516
1.2a	Name der zertifizierenden Institution	bupZert, Berlin
1.3	Ist die WPK zertifiziert/überwacht?	Ja
1.4	Nr. des WPK-Zertifikates	2516-CPR-1003-116-12620
1.5	Ausstellungsdatum des WPK-Zertifikates:	19.12.2020
1.6	WPK-Beauftragter:	Herr Dobrowolski
2	Prüfung	
2.1	Verantwortlicher/Durchführender der WPK (intern):	PTW
2.2	Ort/Adresse des Labors für die WPK (intern):	Witzenhausen
2.3	Wurde die Probenahme entsprechend den Anforderungen der DIN EN 932-1 durchgeführt?	Ja
2.4	Werden alle verlangten Prüfungen der WPK (intern) im erforderlichen Prüfrhythmus durchgeführt?	Ja
2.5	Werden die geforderten Aufzeichnungen der "WPK" ordnungsgemäß geführt?	Ja
3	Lieferschein	
3.1	Enthält der Lieferschein alle verlangten Angaben?	Ja
3.2	Enthält der Lieferschein alle notwendigen Zeichen?	Ja
4	Herstellwerk	
4.1	Entspricht die Lagerung der Gesteinskörnungen den Anforderungen?	Ja
4.2	Werden die Silos, Halden, Boxen etc. gekennzeichnet?	Ja

Dr. Moll GmbH & Co. KG Stelly. Prüfstellenleiter Dipl.-Geol. M. Quakenack

Dr. Moll GmbH & Co. KG Geschäftsführer

Dr. M. Schmid

