Dr. Moll GmbH & Co. KG

Prüfinstitut und Ingenieurbüro

Tel.: 05136 / 8006-60 Sattlerstr. 42 30916 Isernhagen FAX: 05136 / 8006-74

http://www.drmoll.de e-mail: webmaster@drmoll.de

	Prüfungsart	Fachgebiet									
		Α	BB	BE	С	D	F	G	Н	- 1	
0	Baustoffeingangsprüfungen				C0	D0					
1	Eignungsprüfungen	A1			-				H1	11	
2	Fremdüberwachungen				-		F2			12	
3	Kontrollprüfungen	A3	BB3	BE3	C3	D3	F3	G3	H3	13	
4	Schiedsuntersuchungen	A4	BB4	BE4	C4	D4	F4	G4	H4	14	

• Bauaufsichtliche Anerkennung nach Landesbauordnung (NDS 07) als ÜZ-Stelle **August Oppermann** für Gesteinskörnungen mit Alkaliempfindlichkeit nach Alkali-Richtlinie

• Anerkannte Sachverständigenstelle der DB AG

Sachkundig hinsichtlich Probenahmen gem. LAGA PN 98

• Mitglied im <u>bup</u> – Bundesverband unabhängiger Institute für bautechnische Prüfungen e.V..

• Gesellschafter der bupZert GmbH, Berlin.

Dr. Moll GmbH & Co. KG, Sattlerstraße 42, 30916 Isernhagen

Kiesgewinnungs- und Vertriebs- GmbH

Brückenstr. 12 34346 Hann. Münden

Prüfbericht	nach	TL SoB-StB (EN 13285) SoB	
Prüfbericht-Nr.:	1448/8-SoB/	/24 Prüfberichtdatum:	14

14.10.2024 August Oppermann, Kiesgewinnungs- und Vertriebs-GmbH, Werk Hardegsen Anschrift des Werkes:

Bergstraße 99, 37181 Hardegsen

Werk: Hardegsen Petrographischer Typ:

Brechkorn Material: Art der Güteüberwachung: Fremdüberwachung nach TL G SoB-StB

Prüfbericht Nr.: 1448/8b-SoB/23 vom 06.12.2023 Typprüfung/Eignungsnachweis bzw. letzte 2-jährliche Güteüberwachung:

2. Halbjahr 2024 Überwachungszeitraum: Zulassungszeitraum: 1. Halbjahr 2025

Angaben über die Probenahme nach DIN EN 932-1:

Ort: Steinbruch Hardegsen

Teilnehmer: Herr Hartmann (Werk), Herr Lanaras (Dr. Moll GmbH & Co. KG)

Nr.	Sortennummer	Lieferkörnung [mm]		Datum der Probenahme	Entnahmestelle	Anwendungsbereich
1	0/32 STS	0/32	STS+NS	20.08.2024	Band	Schottertragschicht
2	0/32 FSS	0/32	FSS+NS	20.08.2024	Band	Frostschutzschicht
3	0/45 FSS	0/45	FSS+NS	20.08.2024	Band	Frostschutzschicht
4	0/45 STS	0/45	STS+NS	20.08.2024	Band	Schottertragschicht

*) Der den Baustoffgemischen zugegebene Natursand stammt aus dem Werk Vienenburg. Bemerkungen:

Vortoilor	1 x Fa.	PTW	NDS		
Verteiler	ndf	ndf	ndf		

Die Prüfergebnisse beziehen sich ausschließlich auf die Prüfgegenstände.

Der Prüfbericht umfasst _8_ Seiten.

Dr. Moll GmbH & Co. KG, Prüfinstitut und Ingenieurbüro

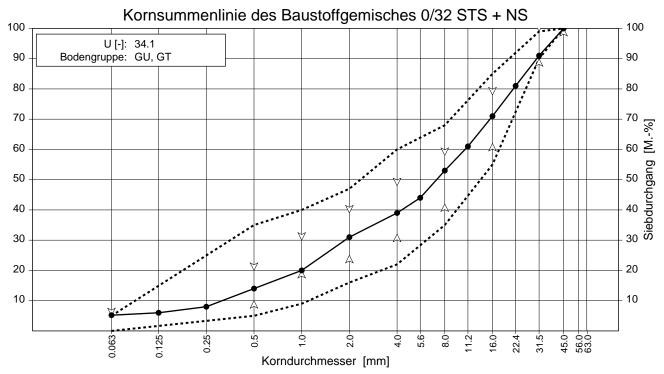
Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 2/8 zum Prüfbericht Nr: 1448/8-SoB/24 vom: 14.10.2024

Geometrische Anforderungen

Gesteinskörnungen (d/D)	[mm]		0/3	2 STS+NS			0/32	2 FSS+NS	
				Kate	gorie			Kate	gorie
Korngrößenverteilung		DIN EN	l 933-1			DIN EN	N 933-1		
		Soll	Ist	Soll	Ist	Soll	Ist	Soll	lst
Gehalt an Feinanteil (< 0,063 r	nm)								
Minimal	FNA 0/1	-	5 0	LF _{NR}	LF _{NR}	-	0.0	LF _{NR}	LF _{NR}
Maximal	[M%]	≤5	5.2	UF ₅	UF ₅	≤5	3.2	UF ₅	UF ₅
Korngrößenverteilung									
Siebgröße [mm]		Rückst.	Σ			Rückst.	Σ		
< 0.125	[M%]	6.3	6			4.0	4		
0.125 - 0.25	[M%]	1.8	8]		1.7	6		
0.25 - 0.5	[M%]	5.5	14			2.9	9		
0.5 - 1.0	[M%]	6.8	20			3.9	12		
1.0 - 2.0	[M%]	10.5	31			3.4	16		
2.0 - 4.0	[M%]	8.5	39	-		6.0	22		
4.0 - 5.6	[M%]	4.8	44	-		4.0	26		
5.6 - 8.0	[M%]	8.4	53	-		10.1	36		
8.0 - 11.2	[M%]	8.4	61	1		14.5	50		
11.2 - 16.0	[M%]	9.6	71	-		16.7	67		
16.0 - 22.4	[M%]	10.0	81	_		14.0	81		
			91	_					
22.4 - 31.5 31.5 - 45.0	[M%]	10.1	100	-		13.8 5.0	95 100		
	[M%]	9.3							
Überkorn		Soll	Ist	_		Soll	Ist		
bis Siebgröße D	[mm]	31		OC ₉₀	OC ₉₀		.5	OC ₉₀	OC ₉₀
	[M%]	90-99	91	-		90-99	95		
bis Siebgröße 1,4 D	[mm]	45		-		45.0			
	[M%]	100	100			100	100		
Zwischensiebanforderungen /		Soll	Ist	_		Soll	Ist		
bei Siebgröße 2.0	[mm]	_	_			15-75	16		
bei Siebgröße 16.0	[mm]			_		47-87	67		
Werkstypische Toleranzen	f1	Soll	Ist	_		Soll	Ist		
bei Siebgröße 0.5 bei Siebgröße 1.0	[mm]	10-20 20-30	14 20			-	_		
bei Siebgröße 2.0	[mm] [mm]	25-39	31						
bei Siebgröße 4.0	[mm]	32-48	39	GB	G _B	l _		GV	G_V
bei Siebgröße 8.0	[mm]	42-58	53			_			
bei Siebgröße 16.0	[mm]	62-78	71			_			
Differenzen der Siebdurchgän	ge	Soll	Ist	1		Soll	Ist		
bei Siebgröße 1.0 - 2.0	[mm]	4-15	11			_	_		
bei Siebgröße 2.0 - 4.0	[mm]	7-20	8			-	_		
bei Siebgröße 4.0 - 8.0	[mm]	10-25	14			-	_		
bei Siebgröße 8.0 - 16.0	[mm]	10-25	18			-	_		
Kornformkennzahl DIN E	N 933-4	ls		Prüfdatun		1	st	Prüfdatun	
	[M%]	2	3	SI ₅₅	SI ₄₀	3	1	SI ₅₅	SI ₄₀
Bruchflächigkeit DIN E	N 933-5	ls	st			ls	st		
Gebrochene Oberfläche (> 90)	[M%]	100	100			100	100		
Gebrochene Oberfläche (50 - 90)	[M%]	0	100	C _{100/0}	C _{100/0}	0	100	C _{100/0}	C _{100/0}
Gebrochene Oberfläche (10 - 50)	[M%]	0	0	ohne F		0	0	ohne F	
Gebrochene Oberfläche (< 10)	[M%]	0	0	Oille F		0	0	Offile F	rururiy
								BEF	3W

Dr. Moll GmbH & Co. KG, Prüfinstitut und Ingenieurbüro

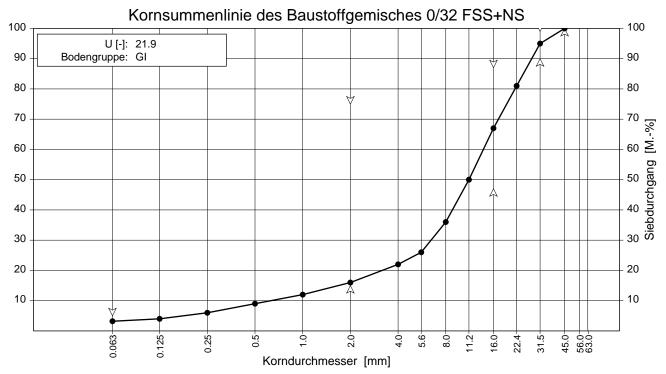

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

 Seite:
 3/8
 zum Prüfbericht Nr:
 1448/8-SoB/24
 vom:
 14.10.2024

Geometrische Anforderungen

Siebgröße mm	Gesteinskörnungen (d/D)	[mm]	1	0/45	5 FSS+NS			0/45	STS+NS	I
Soll Ist S	- , ,				Kate	gorie			Kate	gorie
Soll Ist S	Korngrößenverteilung		DIN EN	l 933-1		ř	DIN EN	l 933-1	·	
Minimal Maximal Max			Soll	Ist	Soll	Ist	Soll	Ist	Soll	Ist
Minimal Maximal Max	Gehalt an Feinanteil (< 0,063 i	nm)								
Maximal Maximal Milk-7% S5 S-8 UF5 UF5 ≤5 S-7 UF5 UF5	·	-	-		LF _{NR}	LF _{NR}	-		LF _{NR}	LF _{NR}
Rückst Schegröße [mm]	Maximal	[M%]	≤5	3.8			≤5	3.7		
	Korngrößenverteilung									-
0.125 - 0.25	Siebgröße [mm]		Rückst.	Σ			Rückst.	Σ		
0.25 - 0.5	< 0.125	[M%]	4.4	4			4.5	4		
0.5 - 1.0	0.125 - 0.25	[M%]	1.6	6			2.0	6		
1.0 - 2.0	0.25 - 0.5	[M%]	2.5	8			4.1	11		
2.0 - 4.0	0.5 - 1.0	[M%]	4.1	13			6.1	17		
4.0 - 5.6	1.0 - 2.0	[M%]	3.9	16			7.9	25		
4.0 - 5.6			6.6	23			9.7	34		
S.6 - 8.0				28			6.3	41		
8.0 - 11.2							-			
11.2 - 16.0	·									
16.0 - 22.4										
Soli										
31.5 - 45.0										
M. M. M. M. M. M. M. M.										
Überkorn Soll Ist OC90 Soll Ist 45.0 OC90 GUI Ist 45.0 OC90 OC90 GUI Ist A5.0 OC90										
D		[141. 70]								
Mi%i 90-99 98 98 99 99 99 99 99		[mm]								
Dis Siebgröße	bio diobgrosso <u>b</u>				OC ₉₀	oc ₉₀			OC ₉₀	ос ₉₀
M% 100 100 100 100 100 2 2 3 5 3 4 5 5 4 5 5 5 4 5 5	his Sieharöße 14D									
Soll Ist Dei Siebgröße 2.0 [mm] 15-75 16 16 10-20 11 15-25 17 16 16 17 17 17 18 18 18 18 19 18 18 18	bis diebgroise 1,4 D									
Dei Siebgröße 2.0 [mm] 15-75 16 47-87 80	7wischensiehanforderungen						†			
bei Siebgröße 22.4 [mm] 47-87 80 Werkstypische Toleranzen Soll Ist Soll Ist bei Siebgröße 0.5 [mm] — — bei Siebgröße 1.0 [mm] — — bei Siebgröße 2.0 [mm] — — bei Siebgröße 5.6 [mm] — — bei Siebgröße 11.2 [mm] — — bei Siebgröße 22.4 [mm] — — Differenzen der Siebdurchgänge Soll Ist Soll Ist bei Siebgröße 2.0 - 5.6 [mm] — — 4-15 8 bei Siebgröße 5.6 - 11.2 [mm] — — 4-15 8 bei Siebgröße 5.6 - 11.2 [mm] — — 10-25 19 bei Siebgröße 1.2 - 22.4 [mm] — — 10-25 20 Kornformkennzahl DIN EN 933-4 Ist								151		
Werkstypische Toleranzen Soll Ist bei Siebgröße 0.5 [mm] — — bei Siebgröße 1.0 [mm] — — bei Siebgröße 2.0 [mm] — — bei Siebgröße 5.6 [mm] — — bei Siebgröße 11.2 [mm] — — bei Siebgröße 22.4 [mm] — — bei Siebgröße 1.0 - 2.0 [mm] — — bei Siebgröße 1.0 - 2.0 [mm] — — bei Siebgröße 2.0 - 5.6 [mm] — — bei Siebgröße 5.6 - 11.2 [mm] — — bei Siebgröße 5.6 - 11.2 [mm] — — bei Siebgröße 5.6 - 11.2 [mm] — — bei Siebgröße 11.2 - 22.4 [mm] — — Kornformkennzahl DIN EN 933-4 Ist Prüfdatum 08.2024 Ist Prüfdatum 08.2024 Bruchflächigkeit DIN EN 933-5 Ist Ist Ist Ist Ist Gebr	<u> </u>						_	_		
bei Siebgröße 0.5 [mm] — — — GV		į					Soll	Ist		
bei Siebgröße 2.0	bei Siebgröße 0.5	[mm]		_						
Dei Siebgröße 5.6 mm	bei Siebgröße 1.0	[mm]	_	_			15-25	17		
bei Siebgröße 5.6	bei Siebgröße 2.0	[mm]	-	_	Gv	Gv	23-37	25	Gp	Gp
bei Siebgröße 22.4 [mm] — — 67-83 80 Differenzen der Siebdurchgänge Soll Ist Soll Ist bei Siebgröße 1.0 - 2.0 [mm] — — 4-15 8 bei Siebgröße 2.0 - 5.6 [mm] — — 10-25 19 bei Siebgröße 5.6 - 11.2 [mm] — — 10-25 19 bei Siebgröße 11.2 - 22.4 [mm] — — Prüfdatum 08.2024 Ist Prüfdatum 08.2024 Kornformkennzahl DIN EN 933-4 Ist Prüfdatum 08.2024 Ist Prüfdatum 08.2024 Bruchflächigkeit DIN EN 933-5 Ist Ist Ist Gebrochene Oberfläche (> 90) [M%] 100 100 100 0 C100/0 C100/0 C100/0 C100/0 C100/0 C100/0			-	-	_ v	v			~в	~B
Differenzen der Siebdurchgänge Soll Ist bei Siebgröße 1.0 - 2.0 [mm]			_	_						
bei Siebgröße 1.0 - 2.0 [mm] — — 4-15 8 bei Siebgröße 2.0 - 5.6 [mm] — — 10-25 19 bei Siebgröße 5.6 - 11.2 [mm] — — 10-25 19 bei Siebgröße 11.2 - 22.4 [mm] — — 10-25 20 Kornformkennzahl DIN EN 933-4 Ist Prüfdatum 08.2024 Ist Prüfdatum 08.2024 Bruchflächigkeit DIN EN 933-5 Ist Ist Ist Gebrochene Oberfläche (> 90) [M%] 100 100 100 100 C100/0				<u> </u>						
bei Siebgröße 2.0 - 5.6 [mm] — — 10-25 19 bei Siebgröße 5.6 - 11.2 [mm] — — 10-25 19 bei Siebgröße 11.2 - 22.4 [mm] — — Prüfdatum 08.2024 Ist Prüfdatum 08.2024 Kornformkennzahl DIN EN 933-4 Ist Prüfdatum 08.2024 Ist Prüfdatum 08.2024 Bruchflächigkeit DIN EN 933-5 Ist Ist Ist Gebrochene Oberfläche (> 90) [M%] 100 100 100 100 100 C100/0				Ist						
bei Siebgröße 5.6 - 11.2 [mm] — — 10-25 19 10-25 20 19 10-25 20 19 10-25 20 10 10-25 20 <t< td=""><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			_	_						
bei Siebgröße 11.2 - 22.4 [mm] — — 10-25 20 Kornformkennzahl DIN EN 933-4 Ist Prüfdatum 08.2024 Ist Prüfdatum 08.2024 Bruchflächigkeit DIN EN 933-5 Ist Ist Ist Gebrochene Oberfläche (> 90) [M%] 100 100 100 100 100 100 C100/0 C100/0 </td <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				_						
Kornformkennzahl DIN EN 933-4 Ist Prüfdatum 08.2024 Ist Prüfdatum 08.2024 [M%] 22 SI ₅₅ SI ₄₀ 24 SI ₅₅ SI ₄₀ Bruchflächigkeit DIN EN 933-5 Ist Ist Ist Ist Gebrochene Oberfläche (> 90) [M%] 100 100 100 100 100 C _{100/0}			_	_						
[M%] 22 SI ₅₅ SI ₄₀ 24 SI ₅₅ SI ₄₀ Bruchflächigkeit DIN EN 933-5 Ist Ist Ist Ist Gebrochene Oberfläche (> 90) [M%] 100 100 100 0 100 C _{100/0} </td <td>·</td> <td></td> <td>ls</td> <td>st</td> <td>Prüfdatun</td> <td>n 08.2024</td> <td></td> <td></td> <td>Prüfdatun</td> <td>n 08.2024</td>	·		ls	st	Prüfdatun	n 08.2024			Prüfdatun	n 08.2024
Bruchflächigkeit DIN EN 933-5 Ist Ist Gebrochene Oberfläche (> 90) [M%] 100 100 100 0 C100/0										
Gebrochene Oberfläche (> 90) [M%] 100 100 C _{100/0} C _{100/0} 0 100 C _{100/0} C _{100/0}	Bruchflächigkeit DIN E					1 70			55	-+∪
Gebrochene Oberfläche (50 - 90) [M%] 0 100 C _{100/0} C _{100/0} 0 100 C _{100/0} C _{100/0}							†			
0100/0 0100/0 0100/0 0100/0	, ,			100	C	C		100	C	C
Gebrochene Oberfläche (10 - 50) IM -% I () () I () I () I ()	Gebrochene Oberfläche (10 - 50)		0	0			0	0		
Gebrochene Oberfläche (< 10) [M%] 0 0 ohne Prüfung 0 0	, ,				ohne F	Prüfung		-	ohne P	rüfung
aERW	Cobroditions Obernation (< 10)	[1411 /0]		J	1	1		. .	at	RW

Seite: 4/8 zum Prüfbericht Nr: 1448/8-SoB/24 vom: 14.10.2024

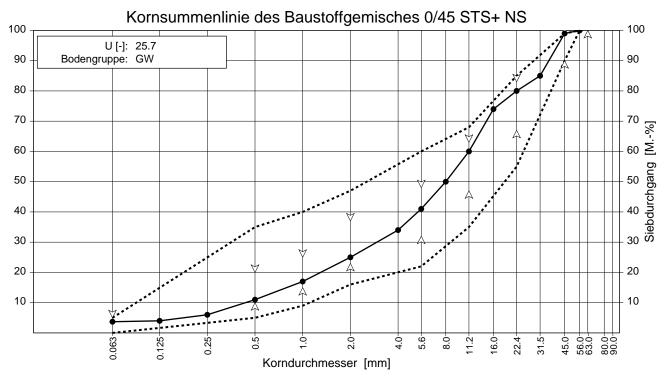

Das untersuchte Material 0/32 STS+NS entspricht hinsichtlich der Kornverteilung den Anforderungen der TL SoB-StB an ein Baustoffgemisch für Schottertragschichten.

Die Anforderungen der Tab. 11, Tab. 12 und Tab. 13 der TL SoB-StB werden eingehalten.

Baustoffgemisch	Ve T	Vergleich mit dem vom Hersteller angegebenen Wert (MDV) Toleranzen der Durchgänge in M% durch die Siebe (mm)								
0/32 STS	0.5	0.5 1 2 4 8								
MDV	10 - 30	14 - 35	23 - 40	30 - 52	43 - 60	63 - 77				
Toleranz	±5	±5	±7	±8	±8	±8				
werkstypische Kornzusammensetzung	15	25	32	40	50	70				
werkstypische Toleranz	10 - 20	20 - 30	25 - 39	32 - 48	42 - 58	62 - 78				
Istwert	14	20	31	39	53	71				

Baustoffgemisch	Differenz der Durchgänge in M% durch die Siebe (mm)								
0/32 STS	1/2 2/4 4/8 8/16								
Soll-Differenz	4 - 15	7 - 20	10 - 25	10 - 25					
Ist-Differenz	11	8	14	18					

Seite: 5/8 zum Prüfbericht Nr: 1448/8-SoB/24 vom: 14.10.2024



Das untersuchte Material 0/32 FSS+NS entspricht hinsichtlich der Kornverteilung den Anforderungen der TL SoB-StB an ein Baustoffgemisch für Frostschutzschichten.

Das untersuchte Material 0/45 FSS+NS entspricht hinsichtlich der Kornverteilung den Anforderarder TL SoB-StB an ein Baustoffgemisch für Frostschutzschichten.

Seite: 6/8 zum Prüfbericht Nr: 1448/8-SoB/24 vom: 14.10.2024

Das untersuchte Material 0/45 STS+NS entspricht hinsichtlich der Kornverteilung den Anforderungen der TL SoB-StB an ein Baustoffgemisch für Schottertragschichten.

Die Anforderungen der Tab. 11, Tab. 12 und Tab. 13 der TL SoB-StB werden eingehalten.

Baustoffgemisch		Vergleich mit dem vom Hersteller angegebenen Wert (MDV) Toleranzen der Durchgänge in M% durch die Siebe (mm)							
0/45 STS	0.5	0.5 1 2 5.6 11.2 2							
MDV	10 - 30	14 - 35	23 - 40	30 - 52	43 - 60	63 - 77			
Toleranz	±5	±5	±7	±8	±8	±8			
werkstypische Kornzusammensetzung	15	20	30	40	55	75			
werkstypische Toleranz	10 - 20	15 - 25	23 - 37	32 - 48	47 - 63	67 - 83			
Istwert	11	17	25	41	60	80			

Baustoffgemisch	Differenz der Durchgänge in M% durch die Siebe (mm)								
0/45 STS	1/2	11.2/22.4							
Soll-Differenz	4 - 15	7 - 20	10 - 25	10 - 25					
Ist-Differenz	8	16	19	20					

Dr. Moll GmbH & Co. KG, Prüfinstitut und Ingenieurbüro

Sattlerstraße 42 30916 Isernhagen Telefon: (05136) 8006-60 Telefax: (05136) 8006-74

Seite: 7/8 zum Prüfbericht Nr: 1448/8-SoB/24 vom: 14.10.2024

Physikalisch Anforderung	e en	Gesteins- körnung [mm]/ Prüfdatum	Prüf- körnung [mm]	Einzelwert/e			lst- wert	Soll / Sollwert- Kategorie	Ist / Istwert- Kategorie		
Rohdichte ρρ											
DIN EN 1097-6, Anhang A	[Mg/m³]	0/32 STS+NS 04.2024	0/31,5	2.65	56	2	2.655	i.M.	2.66	/	2.66
DIN EN 1097-6, Anhang A	[Mg/m³]	0/32 FSS+NS 04.2024	0/31,5	2.69	94	2	2.691	i.M.	2.69	/	2.69
DIN EN 1097-6, Anhang A	[Mg/m³]	0/45 FSS+NS 04.2024	0/45	2.65	2.650 2.0		2.650	i.M.	2.65	/	2.65
DIN EN 1097-6, Anhang A	[Mg/m³]	0/45 STS+NS 06.2024	0/45	2.670 2.		2.670	i.M.	2.67	/	2.67	
Optimaler Wasse	ergehalt un	d Trockendio	hte (Proct	or)		•				-	
DIN EN 40000 0	[M%]	0/32 STS+NS	0/04 5	opt. Wa	asserg	ehalt	6.2	1	5.8	,	5.8
DIN EN 13286-2	[Mg/m³]	04.2024	0/31,5	Trocl	kendic	hte	2.14	korr.	2.16	/	2.16
DIN EN 40000 0	[M%]	0/32 FSS+NS	0/04 5	opt. Wa	asserg	ehalt	6.6	1	6.4	,	6.4
DIN EN 13286-2	[Mg/m³]	04.2024	0/31,5	Trocl	kendic	hte	2.16	korr.	2.17	/	2.17
DIN EN 13286-2	[M%]	0/45 FSS+NS	0/31,5	opt. Wa	asserg	ehalt	6.5	korr	5.7		5.7
DIN EN 13200-2	[Mg/m³]	04.2024	0/31,5	Trocl	kendic	hte	2.11	korr.	2.16	/	2.16
DIN EN 13286-2	[M%]	0/45 STS+NS	0/24 5	0/31,5 opt. Wa		ehalt	7.0	korr.	5.9	,	5.9
DIN EN 13200-2	[Mg/m³]	06.2024	0/31,3	Trocl	kendic	hte	2.15	KOII.	2.19] ′	2.19
Widerstand gege	n Zertrümi	merung (Sch	lagzertrüm	merung	swert)					
DIN EN 1097-2, Abs. 6	[M%]	0/32 STS+NS 08.2024	8/12,5	24.21	23	3.87	23.32	i.M.	23.8	≤28	≤28
		00.2024	Rohdichte ρρ	o [Mg/m ³] 2.69	9	Kornfor	m [M%]	22		
Los Angeles-Koe	effizient an	Schotter			,						
DIN EN 1097-2, Abs. 5	[M%]	0/45 STS+NS 08.2024	35,5/45		3:	2.6			33	≤40	≤40
Widerstand gege	n Schlag a	n Schotter									
DIN EN 1097-2, Anh. B2	[M%]	0/45 STS+NS 08.2024	35,5/45	30.0	3	1.5	28.3	i.M.	29.9	≤30	≤30
		00.2024	Rohdichte ρ	o [Mg/m ³] 2.6	ı	Kornfor	m [M%]	54		
Wasseraufnahme	e (für Verw	itterungsbes	tändigkeit)				'				
DIN EN 1097-6, Anhang B	[M%]	0/45 STS+NS 06.2024		0.5	0.7	0.4	0.6	i.M.	0.6	/	0.6
Widerstand gege	n Frostbea	nspruchung									·
DIN EN 1367-1	[M%]	0/32 STS+NS		1.5	1	.4	1.7	i.M.	1.5	F ₄	F ₂
		05.2023	Prüfflüssigke	it: Wa	sser						
										18E	KW

Seite: 8/8 zum Prüfbericht Nr: 1448/8-SoB/24 vom: 14.10.2024

Allgemeine Angaben (Fremdüberwachung, Betriebsbeurteilung)

1	Prüfung					
1.1	Verantwortlicher/	Durchführender der WPK (intern):	Herr Hartmann			
1.2	Ort/Adresse des l	Labors für die WPK (intern):	PTW, Witzenhausen			
1.3	Wurde die Probei der DIN EN 932-	nahme entsprechend den Anforderungen I durchgeführt?	Ja			
1.4		ingten Prüfungen der WPK (intern) im üfrhythmus durchgeführt?	Ja			
1.5	Werden die gefor ordnungsgemäß	derten Aufzeichnungen der "WPK" geführt?	Ja			
2	Lieferschein					
2.1	Enthält der Liefer	schein alle verlangten Angaben?	Ja			
2.2	Enthält der Liefer	schein alle notwendigen Zeichen?	Ja			
3	Herstellwerk					
3.1	Entspricht die Lag den Anforderunge	gerung der Gesteinskörnungen en?	Ja			
3.2	Warden die Silos	, Halden, Boxen etc. gekennzeichnet?	Ja			
0.2	Werden die Onos	, Halden, Boxen etc. generalizationnet:	Ja			

Dr. Moli Smbl & Co KG Stelly Willis Shill Heiter Dipl.-Geol. R. Lenhard

Dr. Moll GmbH & Co. KG Geschäftsführer

Dipl.-Geol. M. Quakenack